

MICRO/ Apple

MICRO/ Apple 1

Ford Cavallari, Editor

c~1nk
Incorporated
P.O. Box 6502

Chelmsford, Massachusetts 01824

Notice
Apple is a registered trademark of Apple Computer, Inc.
MICRO is a trademark of Micro Ink, Inc.

Cover Design and Graphics by Gary Fish

Every effort bas been made to supply complete and accurate information. However, Micro
Ink, Inc. assumes no responsibility for its use, nor for infringements of patents or other
rights of third parties which would result.

Copyright© 1981 by Micro Ink, Inc.
P.O. Box 6502 (34 Chelmsford Street)
Chelmsford, Massachusetts 01824

All rights reserved. With the exception noted below, no part of this book or the accompany­
ing floppy disk may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic or other record, without
prior agreement and written permission of the publisher.

· To the extent that the contents of this book is replicated on the floppy disk enclosed with
the book, it may be stored for retrieval in an Apple Computer. The original retail purchaser
is permitted to make one (1) copy of the disk solely for bis own back-up purposes.

MICRO/Apple Series ISSN: 0275-3537
MICRO/ Apple Volume 1 ISBN: 0-938222-05-8
Printed in the United States of America
Printing 10 9 8 7 6 5 4 3 2 1
Floppy disk produced in the United States of America

To My Parents

Acknowledgements

I wish to thank the entire MICRO staff, and especially the editorial board which
worked (almost) as hard as I did on this project. Special thanks go to Marjorie
Morse, to whom this project really belongs and without whom there would be no
book; to Richard Rettig for providing the insight and wisdom that only an
experienced book publisher can; to Mary Ann Curtis, for providing editorial advice
and moral support-both in abundance; to Gary Fish, for truly inspired artistic
advice; to Editor/Publisher Bob Tripp, without whom there would be no MICRO
and hence no MICRO/ Apple; to the technical services staff at MICRO; and finally
to Ski, for being there. Since the compilation of this book required extensive re­
typesetting of text and equally major re-generation of program listings, I'd also
like to express thanks and appreciation to all those hearty souls at MICRO involved
in these processes. I especially wish to thank Emmalyn H. Bentley and Joanne
McQueen for their endless hours of typesetting; Loren Wright, Darryl Wright,
Paul Geffen, and Bill Francis for programming and technical services; Linda Gould
for layout work; and L. Cathi Bland for editorial assistance. At Dartmouth, where
I edited much of the work, I'd like to thank David (Taz) Townsend, Nick (Nuke)
Armington, Jim (Boj) Pearson, and Heather (Mustafa) MacLeod, all of whom con­
tributed more than they might imagine to this book's completion.

F.C.

Contents

INTRODUCTION

l BASICAIDS
Applesoft Renumbering 5

James D. Childress

1

3

Better Utilization of Apple Computer Renumber and Merge
Program 9

Frank D. Chipchase
SEARCH/CHANGE in Applesoft 12

James D. Childress
An Apple II Program Edit Aid 17

Alan G. Hill

2 I/O ENHANCEMENTS 23
A Little Plus for Your Apple II 25

Craig Peterson
Zoom and Squeeze 29

Gary B. Little
A Slow List for Apple BASIC 33

R.B. Sander-Cederlof
Alarming Apple 3 7

Paul Irwin

3 RUNTIME UTILITIES 41

Data Statement Generator 43
Virginia Lee Brady

An EDIT Mask Routine in Applesoft BASIC 47
Lee Reynolds

Business Dollars and Sense in Applesoft 55
Barton M. Bauers, Jr.

Lower Case and Punctuation in Applesoft 62
James D. Childress

4 GRAPHICS 67

Graphing Rational Functions 69
Ron Carlson

A Hi-Res Graph Plotting Subroutine in Integer BASIC for the
Apple II 75

Richard Fam

How to Do a Shape Table Easily and Correctly 78
John Figueras

Define Hi-Res Characters for the Apple II 96
Robert F. Zant

Apple II High Resolution Graphics Memory
Organization 99

Andrew H. Eliason

5 EDUCATION 103

Apple Pi 105
Robert f. Bishop

Sorting Revealed 109
Richard C. Vile, fr.

Solar System Simulation with or without an Apple II 134
David A. Partyka

Programming with Pascal 143
fohn P. Mulligan

6 GAMES 153

Spelunker 155
Thomas R. Mimlitch

Life for Your Apple 168
Richard F. Suitor

Apple II Speed Typing Test with Input Time Clock 173
John Broderick, CPA

Ludwig Von Apple II 175
Marc Schwartz and Chuck Carpenter

7 REFERENCE 179

An Apple II Programmer's Guide 181
Rick Auricchio

Exploring the Apple II DOS 186
Andy Hertzfeld

Applesoft II Shorthand 191
Allen f. Lacy

The Integer BASIC Token System in the Apple II
Frank D. Kirschner

Creating an Applesoft BASIC Subroutine Library
N.R. McBumey

LANGUAGE INDEX
AUTHOR INDEX - Biographies included
DISK INFORMATION

198

204

212
213
216

1

Introduction

Over the past four years, MICRO magazine, the 6502 Journal, has covered the
Apple more comprehensively than any of the other 6502-based microprocessors.
Apple-related articles in MICRO have outnumbered all others combined. This
trend, of course, does not detract from the quality of the other 6502 machines; it
merely serves to underscore the tremendous popularity of the Apple. Among
businesspeople, educators, scientists, and computer hobbyists, the Apple has
firmly established itself as the preferred machine.

MICRO published its first issue in 1977, the year that the Apple II was first
available commercially. MICRO's first issue, a rather thin and unsophisticated
publication, bore on its cover a large picture of the then unknown Apple II. Since
then, Apples have multiplied enormously. Right now, some 150,000 Apples
around the world perform an astonishing variety of tasks. And, thousands of their
users read MICRO regularly.

While Apples found their way to many corners of the earth, so has MICRO,
for Apple users have been eager to take MICRO's word on how best to use their
machines. As Apples multiplied, the number of pages in MICRO has more than
quadrupled; the quality of the magazine has been greatly enhanced; and the
magazine's coverage of the Apple has expanded accordingly. As Apple and MICRO
grew up together-and both continue to prosper-it seems natural to offer Apple
users an improved version of some of the best and most useful Apple-related
articles published in MICRO. With this volume, we therefore begin a new series
dedicated to Apple users the world over, a series entitled MICRO/ Apple.

This volume, MICRO/ Apple 1, contains some of the more valuable, general
interest articles and programs published in the magazine since 1977. For the first
time, they have been brought together, placed into chapters, and updated and
corrected by the authors and the MICRO staff. All the material-even that which
appeared back in 1977-is now up to date. And all the programs appearing with
these articles-Integer BASIC, Applesoft BASIC, and assembly language programs
alike-have been keyed into our MICRO-lab Apples, tested, and printed out in a
standard format.

Subsequent volumes of MICRO/ Apple will contain comprehensive reference
materials, more advanced machine language routines, educational primers, and
even games. MICRO magazine will of course continue-in fact expand-its
coverage of the Apple. MICRO will continue to be the source for new and
innovative programs, product release information, Apple, and 6502 news.
MICRO/ Apple will be its reference partner-the book you keep next to your Apple
along with the magazine. Future MICRO/ Apple volumes will contain some of the
best MICRO articles, plus other original material, some of it too lengthy to fit into
the magazine format.

2 Introduction

MICRO/ Apple has been designed with the user in mind. The book will lie flat
on a desk, next to your Apple. A diskette (13 sector DOS 3.2 format), which comes
with each book, was created to free you from the tedium of typing in hundreds of
lines of code.

We hope that this new approach will encourage use of those routines that you
might have seen or heard of, but were unable to type in. And we especially hope
that our MICRO/ Apple books will encourage you to experiment with your Apple,
to learn more of its capabilities-for that is what MICRO has always been about.

The microcomputer/microprocessor revolution is definitely here. And the
Apple II is clearly one of the computers at the head of this revolution. The Apple is
not merely an extremely useful tool-it can accomplish more than many room­
size computers of just ten years ago. So, congratulations for owning or having
access to an Apple, one of the finest micros in the world! And good luck. .. because,
with an Apple at your side and this volume of MICRO/ Apple in hand, you are
helping to lead the revolution!

Ford Cavallari, Editor
March 1981

3

1
BASIC AIDS

Introduction 4

Applesoft Renumbering 5
James D. Childress

Better Utilization of Apple Computer Renumber and Merge Program 9
Frank D. Chipchase

SEARCH/CHANGE in Applesoft 12
James D. Childress

An Apple II Program Edit Aid 17
Alan G. Hill

4

Introduction
This chapter contains a group of utility programs designed to make programming
in BASIC easier and less time consuming. Among the Applesoft aids, you'll find a
number of programs and supporting articles which should not only be useful in
practice, but also will help to enrich your understanding of the way Applesoft
works. The "Applesoft Renumbering" article by J.D. Childress contains an infor­
mative discussion on Applesoft; this renumbering program provides an efficient
and easily understood method to renumber a program. "Better Utilization of
Apple Renumber and Merge'' by Frank D. Chipchase, takes a different approach to
renumbering-it suggests small modifications to the canned renumbering routine
which comes with DOS 3.2 master diskette. These modifications make the pro­
gram easier to use. Lastly, "SEARCH/CHANGE" by J.D. Childress presents a
superb text editing system clearly and succinctly.

Moving to Integer BASIC, Alan Hill's "Program Edit Aid" provides a quick
and easy way to search an Integer BASIC program for any string. This machine
language program is fast and gives considerable insight into the structure of
Integer BASIC.

Applesoft Renumbering
by fames D. Childress

This reliable utility program enables the Apple
programmer to renumber any Applesoft program.
However, unlike most renumbering programs presently
available, this one is written in straightforward
Applesoft BASIC, and this provides an easily
understandable insight into the way programs are
stored in memory.

5

The need for a program written in Applesoft to renumber Applesoft programs is
moot now that Apple has made available the 3.2 version of its disk operating
system, that is, if you have a disk system. I wrote the present renumbering pro­
gram while my disk drive was out of action, before the release of the 3.2 version.

Comparison

This Applesoft renumbering program (hereafter called RENUMB) is dread­
fully slow; it took 7.9 minutes to renumber an 8.SK program. In comparison, the
3.2 disk renumber program did the job in 7.8 seconds.

RENUMB cannot change the line number after a GOTO, a GOSUB, or a
THEN equivalent of a GOTO when the new line number has more digits than the
old one. The program prints a list of these changes which must be made by hand.
If there is not enough space, RENUMB inserts only the least significant digits. For
example, the line

100 ON L GOTO 180, 190

with a line number shift upwards by 1005 would be given as

1105 ON L GOTO 185, 195

With the manual change instructions shown here:

LINE 1105: INSERT 1185 AFTER GOTO.

LINE 1105: INSERT 1195 AFTER COMMA.

6 BASIC Aids

If there is more space than needed, RENUMB inserts leading zeros. (Note that
the Applesoft interpreter preserves such leading zeros whereas the 3.2 disk
renumber program does not.)

RENUMB has one useful feature in common with the 3.2 disk renumber
program, namely the capability of renumbering only a specified portion of a pro­
gram. This feature must be used with care since you can renumber a part of a pro­
gram with lines equal to, or in between, some of the line numbers of the remain­
ing part of the program.

Unlike the 3.2 disk program, RENUMB does not order such lines into the
proper sequence.If you really want that, you must run RENUMB first, then use
the screen/ cursor editing controls to copy the out-of-sequence lines through the
Applesoft interpreter. You're left with the nontrivial problem of getting rid of the
still remaining out-of-sequence lines.

Operation

To use RENUMB, you need to append RENUMB to the program to be
renumbered. After the two programs are properly loaded, renumbering is
accomplished by a RUN 63000 command. Give the requested information, then
be patient; remember that RENUMB is numbingly slow.

Copy carefully all the manual changes listed. If you want to see them again,
you can do so by a GOTO 63360 command provided you have done nothing to
clear the variables, i.e., have not given any RUN commands or changed any line of
the program.

You may use the SPEED command to slow up the display and the CTRL-C
command to interrupt the display without clearing the variables. Once the
variables have been cleared, there is nothing you can do except start from the
beginning, that is, load the programs again.

At the beginning of the program run, you are asked for a rough estimate of the
number of program lines (numbered lines) to be renumbered. Be generous, within
limits of available memory. If your estimate is too small, you will get a

?BAD SUBSCRIPT ERROR IN 630XO

where x = 6, 7, or 8 since your estimate is used for array dimensioning. Unless
your program is especially rich in branches, an estimate, say, about 50% greater
than the number of line numbers will suffice.

Program Design

The design of RENUMB is quite simple. First RENUMB searches the program
being renumbered for line numbers (and their memory locations) and the line
numbers (and memory locations) after GOTOs, GOSUBs, THENs, and COMMAs
in multiple branches. This search is done by lines 63040-63090 and for branches,

Childress Applesoft Renumbering 7

the subroutine at 63250. Lines 63130 and 63140 make the changes at the branches
and line 63180 at the labels. The routine beginning at 63350 prints out those
changes that must be made by hand.

All else is bookkeeping. Note: In line 63030, START is the address in memory
of the beginning of the program. Finally, if you write very GOTOy and GOSUBy
programs, you may want to change the definition of DD in line 63030.

Applesoft

Let your Apple be your textbook and teacher. For example, starting fresh with
Applesoft in the computer, enter

1 PRINT: GOTO 521
521 PRINT "FREE":LIST 521

While this program runs without error, that is not necessary. You can enter
anything you want to see how Applesoft handles it.

Now go to the monitor and look at

801 - OC 08 01 00 BA 3A
AB 35 32 31 00

BOC - 10 08 09 02 BA 22 46 52 45 45 22
3A
BC 35 32 31 00

810 - 00 00

for ROM Applesoft (1001 for RAM Applesoft) . In the above lines, arranged here for
clarity, OC, 08, 10 08, and the final 00 00 point to the next instruction in memory,
the 00 00 pointer labelling the end of the program. 01 00 and 09 02 are the line
numbers, 1 and 521 respectively. BA is the token for PRINT; 3A is the ASCII code
for the colon; AB is the token for GOTO; 35 32 31 gives the line number for the
GOTO; and 00 indicates the line ending. 22 46 52 45 45 22 is a direct ASCII code
rendition of "FREE". Finally BC is the token for LIST and 35 32 31 is the line
number 521 after LIST.

Study of the previous paragraph shows that Applesoft puts things into
memory almost exactly the way you type them on the keyboard, except that the
interpreter removes spaces, puts in instruction addresses, translates its command
words into tokens, and uses ASCII code and hexidecimal, low-order bit first
notation.

8 BASIC Aids

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

* * APPLESOFT RENUMBERING *

* JAMES D. CHILDRESS *
* *
* RENUMBER *
* *
* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
* *

REM *************************
END
HOME : VTAB (3): PRINT "RENUMBERING PROGRAM": PRINT

62987
62988
62989
62990
62991
62992
62993
62994
62995
62996
62997
62998
62999
63000
63005
63010 PRINT "LINES TO BE RENUMBERED:": INPUT" BEGINNING LINE--";BGN: INPUT

ENDING LINE--";TRM: INPUT " TOTAL NUMBER OF LINES (ROUGHLY)--"
;D: PRINT

63020 INPUT "RENUMBERED BEGINNING LINE--";SK: INPUT "INCREMENT--";ADD
63030 START= 256 * PEEK (104) + PEEK (103):M =START+ 2:DD = INT (D /

4): DIM LS (D), LN (DD), LM (DD), LDC (DD) ,NA$ (DD) ,ND (DD) , INS (DD) , IMS (DD)
63040 L = L + l:LS(L) = M:LC = 256 * PEEK (M + 1) + PEEK (M): IF LC > 6

2900 THEN 63100
63050 FOR J = M + 2 TO M + 255:TST

3: GOTO 63040
63060 IF TST 171 THEN NA$(K + 1)
63070 IF TST 176 THEN NA$(K + 1)
63080 IF TST = 196 AND PEEK (J + 1)

$(K + 1) = "THEN": GOSUB 63250
63090 NEXT

PEEK (J) : IF TST = 0 THEN M = J +

"GOTO": GOSUB 63250
"GOSUB": GOSUB 63250
> 47 AND PEEK (J + l) < 58 THEN NA

63100 FOR J = 1 TO L:LNU = 256 * PEEK (LS(J) + 1) + PEEK (LS(J)): IF L
NU > TRM OR LNU > 62900 THEN PRINT : PRINT "RENUMBERING COMPLETED T
HROUGH LINE ";LUN;".": GOTO 63350

63110 IF LNU < BGN THEN 63190
63120 SK$= "0000" + STR$ (SK):SK$ = RIGHT$ (SK$,5)
63130 FOR I = 1 TO K: IF LNU < > INS(I) THEN NEXT : GOTO 63180
63140 FOR KA = 1 TO ND(I): POKE LOC(I) + 1 + ND(I) - KA, VAL (MIDS (SK$

,6 - KA,l)) + 48: NEXT
63150 IF LNU = INS(!) THEN IMS(!) = SK
63160 IF LEN (STR$ (SK)) >ND(!) THEN PCR = l
63170 NEXT
63180 so =

so
INT (SK/ 256): POKE (LS(J) + l),SO: POKE (LS(J)) ,SK - 256 *

63190 FOR I = l TO K: IF LNU = LN(I) THEN LM(I) = SK: IF LNU < BGN THEN
LM(I) LNU

63200 NEXT
63210 SK = SK + ADD:LUN = LNU
63220 NEXT

LC:SU PEEK (J + 1) - 48 63250 K = K + l:LN(K) =
63260 FOR KA = J + 2 TO J + 6:CPR

63290
PEEK (KA): IF CPR 0 OR CPR

CPR = 44 THEN GOTO
63270 SU = 10 * SU + CPR
63280 NEXT

- 48

63290 LOC(K) = J:ND(K) =KA - - J:INS(K) = SU:J
NA$(K + 1) "COMMA":J =KA: GOTO 63250

63300 RETURN
63310 END
63350 IF PCP < > 1 THEN END

KA - 1: IF CPR

58 OR

44 THEN

63360 PRINT : PRINT "NOTE: YOU MUST MAKE THE FOLLOWING CHAN-": PRINT "GE
S MANUALLY:": PRINT

63370 FOR I= l TOK: IF LEN (STR$ (IMS(!))) < = ND(I) THEN NEXT : END

63380 PRINT "LINE ";LM(I),": INSERT ";IMS(!);" AFTER ";NA$(!);"."
63390 NEXT : END

Better U tiliza ti on of
Apple Computer Renumber
and Merge Program

Frank D. Chipchase

9

The renumber and merge program provided with the
DOS 3.2 (and 3.3) is one of the most powerful utilities
available for the Apple. The technique presented below
adds even more power and versatility to this highly
useful program, by making the routine more quickly and
easily available from the disk.

I consider a utility program excellent when it can be utilized at any time under any
condition. This brings me to that marvelous Applesoft Renumber and Merge pro­
gram which comes with DOS 3.2.

Many times, during programming or editing, the need arises to move chunks
of your program to different locations, to renumber portions of your program, or to
merge in some of your favorite routines. Now comes the test of using a good utili­
ty program.

You did not load and run the A/ S -R/N &. M Program prior to starting work on
your program. Now what?

Save your program, load and run the A/S - R/N &. M program, now load back
in the program you were working on and you are ready to go again. Meanwhile,
your train of concentration has been broken on what you were originally doing.

There is a better way; at least I think there is. If we plan ahead a little bit.

If the A/S - R/N &. M program is set up as a 'B' file then when it is needed it
can be 'BLOADED' into memory while our program that is being worked on stays
in memory and is undisturbed.

Here's the procedure in setting up an A/S - R/N &. M 'B' file. The next time
you boot a disk check to see what HIMEM: is set for right after the disk is booted.
This is found by doing the following from the keyboard.

Print PEEK (115) + 256 * Peek (116) (C/R).

10 BASIC Aids

(On a 48K HIMEM: 38400 - on a 32K HIMEM: 22016.) The next thing to do after
recording your system HIMEM: is to load and run that outstanding renumber and
merge program that Apple Computer gave you on your master DOS 3.2 diskette.
When the A/S prompt character returns it means that the Renumber program has
been put into a little comer someplace in your computer's memory, ready for your
beck and call.

Actually where it resides in memory is tight under your system's previous
HIMEM: which was set when you first booted (this is the number you first recorded).

HIMEM: has now been changed by the renumber program. Let's record the
new HIMEM: again, from the keyboard.

Print PEEK (115) + 256*PEEK (116) (CIR)

(On a 48K HIMEM: 36352 - on a 32K HIMEM: 19968.)

We now have two numbers which we recorded. Subtract the smaller from the
larger, this should equal 2048.

0.K., let's put the renumber program into a 'B' file on disk. From the
keyboard:

BSAVE A/S-R/N-M, A (your 2nd HIMEM: number you recorded) , L 2048. For a
48K this would look like BSAVE A/S-R/N-M, A36352, L2048. For a 32K BSAVE
A/S-R/N-M, A36352, L2048. 0.K., the 'B' file for the renumber program is all set.

Now, let's assume you are merrily programming away and the renumber pro­
gram is not in memory.

The need occurs for renumbering, a merge or a hold. The newly created
A/S-R/N-M 'B' file can now be 'BLOAD'ed in without disturbing your existing
program. From the keyboard-BLOAD A/S-R/N-M (C/R).Once the 'B' file is load­
ed in, there are a few instructions that must be issued to your computer so that it
knows the A/S-R/N-M program is in memory and where it is when it is needed.
From the keyboard enter the following instructions:

For A 48K System:

HIMEM: 36352 (CIR)
POKE 1013, 76 (CIR)
POKE 1014,0 (CIR)
POKE 1015, 142 (CIR)

For A 32K System:

HIMEM: 19968 (CIR)
POKE 1013,76 (CIR)
POKE 1014,00 (CIR)
POKE 1015,78 (CIR)

Chipchase Better Utilization 11

0.K., that's it. You are all set to use the Renumber program. As you will note,
your existing program is still in memory and is undisturbed. The first instruction
reset your system's HIMEM: below the A/S-R/N-M program that you just
BLOADED in. This is required for when you use the hold feature of the program.
The last three POKE instructions tell the ampersand character ' ' &.' ', which you
use when using the renumber program, where to find the A/S-R/N-M program in
your system. (See Applesoft manual p.123.)

All the operating commands and formats that are used for the renumber pro­
gram are valid and are used in the same manner. To free up the 2K of memory the
A/S-R/N-M program is occupying, do a HIMEM: 38400 for a 48K system or a
HIMEM: 22016 for a 32K system.

Now that you have come this far the ideal thing to do is set up a 'T' (text) file
and let your disk 'exec' the whole procedure into your APPLE.

The program to write a text file would look like the following:

]LIST

100$=CHR$(4): REM CTRL D

20 PRINT D$; "OPEN RENUMBER-MERGE"

30 PRINT 0$; "WRITE RENUMBER-MERGE"

40 PRINT "BLOAD A/S-R/N-M"

50 PRINT " HIMEM:36352:" REM FOR 32K SYSTEM USE 19968

60 PRINT "POKE 1013,76"

70 PRINT "POKE 1014,0"

80 PRINT "POKE 1015,142": REM FOR 32KSYSTEM USE 78 IN PLACE OF 142

90 PRINT 0$; "CLOSE RENUMBER-MERGE"

100 END

After the above program is run, a text file, named Renumber-Merge, will be
created. Make sure this 'T' file is on the same diskette as your 'B' file A/S-R/N-M.

Now, whenever the renumber program is required all you have to do is type in
EXEC Renumber-Merge.

12 BASIC Aids

SEARCH/ CHANGE
In Applesoft

by J. D. Childress

Many larger computer systems feature text editors
which simplify local and global editing of program
lines. This SEARCH/CHANGE routine equips your Apple
with the same capabilities. By directly interacting with
your Applesoft program, SEARCH/CHANGE can
massively reduce editing time!

Although slow, the program works well and reliably. But one warning,
SEARCH/CHANGE is like the girl with the curl - when it's good, it's very, very
good, but when it's bad, it's horrid. If it misfires, your program likely will be lost.
The wise will always keep a current backup.

Preliminaries

Insertion of a CHANGE item longer or shorter than the SEARCH item
requires that spaces either be added or deleted. This is accomplished by a shift of
the program in memory and corresponding changes of all the next-address
pointers. Needless to say, the part of memory space being used by SEARCH/
CHANGE must not be jiggled or else its operation will be clobbered. So that the
SEARCH/CHANGE program can remain fixed in memory and all the Applesoft
operational pointers functional, spacers (colons) are added in line 62999.

The heart of this memory move is the call from Applesoft (see lines 63370 and
63380 in the program listing) . The memory move call given in CONTACT 5, 5
(June 1979) works only for Integer BASIC; a call to the Apple HOTLINE produced
the information that the move call had to be routed through a short machine
language routine. The routine supplied by Apple is the following: POKE 768,160:
POKE 769,0: POKE 770, 76: POKE 771,44: POKE 772,254. The corresponding call
is then CALL 768. This location is $300-$304. I use that space for my SLOW LIST
utility. Changing to location $342-$346 will cause no ill effects (see line 63010) .

One block of memory cannot be moved into a second block overlapped by the
first because one byte would be moved into another before the latter's content had
been read. Thus a two-step procedure is required. Line 63370 moves the memory
block to the top of memory just below HIMEM and line 63380 moves it back to
the desired end location.

Childress SEARCH/CHANGE 13

Recall how Applesoft stores BASIC in memory. The end of each line is
indicated by a zero byte. The next two bytes contain a pointer, low byte first, to
the next line's first byte, the low byte of its next-address pointer. When a branch is
executed, the program skips along these pointers from the first until the indicated
address is found. If any next-address pointer points to a wrong ixldress, all gang
a-gley. So until all these pointers are put aright, the program being searched and
changed is simply hidden from the operating program: Line 63160 POKEs the
next-address pointer for line 63000 into the pointer location of line l; after the
dust settles, line 63230 restores the original pointer.

Design

A few additional comments on the design of the SEARCH/CHANGE Program
are offered here in lieu of remark statements in the program itself.

A search is made, lines 63020-63030, from the end of program memory to find
two things: the location of the LIST in line 63310 and the location of the begin­
ning of line 62999. Two numbers-540 and 1730-are set for SEARCH/CHANGE
exactly as written (lines 63000 and following) in the listing. The first number
causes a skip from the end of the program to the immediate neighborhood of LIST,
the second, a skip from LIST to near the end of line 62999. If any changes are made
to SEARCH/CHANGE or if anything is put higher in memory, these numbers will
have to be adjusted.

One effect of the above search is a delay after the return following RUN
63000. A too-short delay should alert the user that line 62999 might not have
enough colons for substantial changes. If the colons are depleted, line 63350 halts
the change operation and prints a message to that effect.

The perceptive reader will note a number of small numbers in various lines.
These are finagle factors adjusted (but probably not optimized) to make the pro­
gram run. For example, the 10 in line 63040 prevents the appearance of multiple
line 62999's for a change item shorter than the search item. If changes are made in
the program as given, these numbers also may have to be adjusted.

The program identifies the search item, FOR loop lines 63090-63110; then
identifies the change item, if any, FOR loop line 63130.

The actual search is carried out by FOR loop lines 63180-63220. To get the
best operating speed, we close the FOR loop within a single line (line 63180) if no
byte of significance is found. Even so, the testing for up to three conditions takes
time. If one of these conditions is not met, then the following lines either pass to
subroutine line 63330 to complete the item identification test and make the item
change (if one is entered), or set the strings search flag, or start the search of the
next program line, whichever is indicated.

If a change is to be made, the afore described memory moving is done and line
63400 then POKEs in the replacement. After return from the subroutine, line
63210 updates the address pointers for the program line.

14 BASIC Aids

Line 63120 determines that the search is over when line 62999 is reached and
passes to output after unmasking the hidden program. The routine, lines
63280-63320, accomplishes the line listing feature. Note that the line number has
to be POKEd in so that there should always be five digits following LIST. After use
of the program, the actual number that appears here when line 63310 is listed is
the last number POKEd in. There should be leading zeros if that number had less
than five digits. The Applesoft interpreter preserves these leading zeros whereas
the Apple renumbering program does not. The colons allow space in the latter
case.

Operation

Merge/append SEARCH/CHANGE to the program to be searched. Note that
the program being searched lies below SEARCH/CHANGE in memory. Enter the
search item as line 1 and the replacement item as line 2. Note that anything that
will list as line 1 (or line 2) can be entered. Execute with a RUN 63000.

Experience has shown no need to search both inside and outside strings at the
same time; it's an either/or situation. The SEARCH/CHANGE is made outside
strings only unless the first character of line 1 is the quotation mark; in that case,
the SEARCH/CHANGE is made inside strings only. For example,

1 TOTAL

would search for TOT AL outside strings but

1 "TOTAL

would search for TOTAL inside strings.

A quotation mark can be used with line 2 in a similar way to sneak "forbid­
den" words past the interpreter. To sneak things into line 1 (Le. a number),
preface the entry with@. This sneaking should be used with care in changes out­
side strings; the interpreter has a way of exacting its revenge on sneaky things.

Your attention is directed to the fact that the item replacement is made as
each item is found. This fact taken with the slow speed of the program dictates
patience on the part of the user. Don't hit Ctrl-C to see what's going on. Stopping
things in the midst of a memory move or a pointer updating can be disastrous.

As mentioned earlier, things can go wrong sometimes, even without help. If
the worst happens, try entering a new line or deleting a line or both; that
sometimes will save part or almost all the program. A sensible precaution is to
check line 62999 often and keep it well stocked with colons. And again, keep a
current backup copy.

A wise idea is to use a SLOW LIST utility with SEARCH/CHANGE (I recom­
mend the one supplied with S-C ASSEMBLER II). Then if a LIST command
produces endless junk, the listing can be aborted without the additional hazard of
a RESET.

Childress SEARCH/CHANGE 15

Another good idea is to know your HIMEM. If something goes wrong, it's
possible for the HIMEM setting to be ratcheted down to a low value.

Addendum

Since writing SEARCH/CHANGE, I have acquired APPLE-DOC by Roger
Wagner. APPLE-DOC, an excellent set of programs, works well and is much faster
than the present program. I use APPLE-DOC often but find some changes that
APPLE-DOC can't make; for example, replacing something like B(I) by B(X%(1)).

62986
62987
62988
62989
62990
62991
62992
62993
62994
62995
62996
62997
62998
62999

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
END

*

*
*

SEARCH/CHANGE
J. D. CHILDRESS

* SEARCH/CHANGE

*
*
*

* * * COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
* *
************************* ~

:: :::: :: : : :: :: : :: : :: : :: : : :::: ::: : ::: : : :: : ::: : : :: : :: : : ::: ::: :: ::
63000 DIM SK(lOO) ,NT(lOO) ,L(lOO) :START= 256 * PEEK (104) + PEEK (103)

: FINI = 256 * PEEK (106) + PEEK (105)
63010 HM = 256 * PEEK (116) + PEEK (115): POKE 834,160: POKE 835,0: POKE

836,76: POKE 837,44: POKE 838,254
63020 FOR WW = FINI - 540 TO START STEP - 1: IF X = 0 AND PEEK (WW) =

188 THEN W = WW:X = l:WW = WW - 1730
63030 IF 256 * PEEK (WW + 1) + PEEK (WW) < > 62986 THEN NEXT
63040 NL= 256 * PEEK (WW - 1) + PEEK (WW - 2):CO =NL - WW - 10: HIMEM:

HM - WW - 100
63050 IF 256 * PEEK (START + 3) + PEEK (START + 2) < > l THEN PRINT

" YOU MUST ENTER YOUR SEARCH ITEM AS LINE": PRINT "l BEFORE YOU RUN
63000.": HIMEM: HM: END

63060 LIST 1,2: PRINT : PRINT : PRINT "PLEASE VERIFY IF THE COMPUTER TAK
ES": PRINT "THIS AS YOU INTENDED. DO YOU WANT": INPUT "TO CONTINUE (
YES OR NO)? ";Y$: PRINT : IF Y$ < > "YES" THEN HIMEM: HM: END

63070 PRINT "THE CHANGE ENTERED WILL BE MADE IN THE": PRINT "RANGE OF LI
NES CHOSEN ENTER": INPUT" THE BEGINNING LINE ";BL: INPUT" THE

ENDING LINE ";EL: PRINT
63080 NF = 256 * PEEK (START + 1) + PEEK (START)
63090 FOR I = 0 TO 255:SK(I) PEEK (START + 4 + I): IF SK(I) < > 0 THEN

NEXT
63100 N = I - 1
63110 IF SK(O) 34 OR SK(O) = 64 THEN SQ= (SK(O) 34): FOR = 1 TON

: SK (I - l) SK (I) : NEXT : N = N - 1
63120 M =START+ N + 6 +SQ: INC= O:CH = 0: IF 256 * PEEK (M + 3) + PEEK

(M + 2) < > 2 THEN CH = 1: GOTO 63170
63130 FOR I= 0 TO 255:NT(I) = PEEK (M + 4 +I): IF NT(I) < > 0 THEN NEXT

63140 NN = I - l:ADD = NN - N:M = M + NN + 6:WW = WW - ADD(ADD < 0) + 6
63150 IF NT(O) = 34 THEN FOR I l TO NN:NT(I - 1) = NT(I): NEXT :NN =

NN - l:ADD = ADD - 1
63160 X = INT (NL/ 256):Y =NL - 256 * X: POKE START+ l,X: POKE START,

y
63170 LM = 256 * PEEK (M + 3) + PEEK (M + 2):NA = 256 * PEEK (M + 1) +

PEEK (M) : IF LM > 62986 THEN 63230

16 BASIC Aids

63180 FOR I = M + 4 TO M + 255: IF PEEK (I) < > 0 AND PEEK (I} < > S
K(O) AND PEEK (I) < > 34 THEN NEXT

63190 IF PEEK (I) 34 THEN SQ = SQ + l - 2 *
63200 IF PEEK (I) SK(O) AND SQ < > l THEN
63210 IF PEEK (I) = 0 THEN NA = NA + INC:X =

56 * X: POKE M + l,X: POKE M,Y : M =I + l:
63220 NEXT

(SQ = l)
GOSUB 63330
INT (NA / 256):Y

GOTO 63170
NA - 2

63230 X = INT (NF/ 256):Y =NF - 256 * X: POKE START+ l,X: POKE START,
y

63240 PRINT : PRINT : PRINT "THE ITEM" : PRINT " ";: LIST l: PRINT : PRINT
"IS FOUND IN THE FOLLOWING LINES:": PRINT IF L(l) = 0 THEN PRINT

NONE.": HIMEM: HM: END
63250 FOR I= l TOK: PRINT L(I) ,: NEXT : PRINT
63260 PRINT : INPUT "DO YOU WANT THESE LINES LISTED (Y/N)? ";Y$: IF Y$ =

"N" THEN HIMEM: HM: END
63270 PRINT : PRINT "THERE WILL BE A WAIT AFTER EACH LINE": PRINT "UNTIL

YOU HIT 'RETURN' TO CONTINUE.": PRINT
63280 FOR I = l TOK: IF L(I) = L(I - 1) THEN 63320
63290 L$ = "0000" + STR$ (L(I)):L$ = RIGHT$ (L$,5)
63300 FOR J = 1 TO 5: POKE W + J,48 + VAL (MID$ (L$,J,l)): NEXT
63310 LIST 00000::::::::: INPUT "";Y$
63320 NEXT : HIMEM: HM: END
63330 FOR J = 0 TON: IF PEEK (I + J) < > SK(J) THEN RETURN
63340 NEXT
63350 IF CO - INC <ADD AND CO% = 0 THEN CH = l:CO% = l: PRINT "~HE SUPP

LY OF COLONS IN LINE 62999 IS": PRINT "DEPLETED. THE CHANGE HAS BEE
N MADE": PRINT "THROUGH PART OR ALL OF LINE ";LM: PRINT

63360 K = K + l:L(K) = LM: IF CH < > 0 OR LM < BL OR LM > EL THEN RETURN

63370 ZS= I+ N:X = INT (ZS / 256):Y =ZS - 256 * X: POKE 61,X: POKE 60
,Y:X = INT (WW/ 256):Y =WW - 256 * X: POKE 63,X: POKE 62,Y:ZH = H
M - 100 - WW+ ZS:X = INT (ZH / 256):Y = ZH - 256 * X: POKE 67,X: POKE
66,Y: CALL 834

63380 POKE 61,X: POKE 60,Y:X = INT ((HM - 100) / 256):Y HM - 100 - 25
6 * X: POKE 63,X: POKE 62,Y:ZS =I+ NN:X INT (ZS / 256):Y =ZS -
256 * X: POKE 67,X: POKE 66,Y: CALL 834

63390 WW= WW+ ADD: INC= INC+ AD'°
63400 FOR J = 0 TONN: POKE I+ J,NT(J): NEXT :I I+ NN
63410 RETURN

An Apple II
Program Edit Aid

by Alan G. Hill

17

Oftentimes it would be very useful to search an Integer
BASIC program for occurrences of a certain
string-especially when editing long programs. The
Apple's built-in editor does not offer this feature, but
this program edit aid does. The BASIC edit program
drives a machine language routine, making the search
capability here exceptionally quick.

When editing an Apple Integer BASIC program, you often want to locate all occur­
rences of a variable name, character string, or BASIC statements. This is usually
the case when you are changing a variable name, moving a subroutine, etc., and
you want to be sure you have located all references. This BASIC Edit program
should aid your editing.

Load the BASIC program into high memory and append the program to be
edited to it. The Edit program uses a machine language routine at hex 300 to 39F
to search BASIC statements for the requested string and return the BASIC line
number in memory locations 17 and 18. The routine is re-entered at 846 to find
the line number of the next occurrence. This process is continued until no further
occurrences can be found. The high order byte of the line number (location 18) is
set to hex FF to indicate that the search is finished.

BASIC Edit Program

Note in line 32680 of the BASIC program that LIST LINE is an invalid BASIC
statement. You will have to resort to a little chicanery to get the statement in.
First code line 32680 as PRINT LINE. Then enter the monitor and change the
PRINT token ($62) to a LIST token ($ 7 4). This is easiest done if you code line
32680 first and then search for the token in high memory ($3FFA when HIMEM is
16384). (Ed. Note: The author's assumption is correct.)

After coding the BASIC program and the machine language routine, you will
then need to append the program to be edited. Note that the program must have
line numbers less than 32600. To append a program, you must first "hide" the
Edit program. This is done by moving th.e HIMEM pointer (202) and (203) down
below the Edit program. Then load the edited program and reset HIMEM. i.e.:

18 BASIC Aids

LOAD (EDIT PROGRAM)
POKE 76, PEEK (202)
POKE 77, PEEK (203)
LOAD (PROGRAM TO BE EDITED)
POKE 76,0 HIMEM MOD 256
POKE 77,64 HIMEM/256

You can then RUN 32600 the Edit program. Enter the character string or
variable name to be searched when prompted by "FIND?". To search for a hex
string (e.g. all occurrences of COLOR=), enter an @ character followed by the
desired hex character pair (@ 66 for the COLOR= example) .

EXAMPLES

To find all occurrences of:
SCORE
XYZ
RETURN
DIMA
All references to 1000

Input
SCORE
XYZ
@SB
@ 4EC1
@ E803

The Edit program will end if the screen is full (> 18 lines) . To continue the
search for more occurrences, a RUN 32720 will return another page. Happy
Editing!

Find Routine
Page Zero Memory Map

$3-4 Address of search limit. Set to HIMEM by routine, but could be set lower
to avoid searching Edit program.

$6-7 Address of BASIC Token compared. Incremented until it exceeds Limit
Address.

$8-9 Ending address - 1 of current statement being scanned.

$A-B Address of string being searched. Set up by Edit program.

$C Length - 1 of string being searched. Set up by Edit program.

$11-12 Line number of statement c<:mtaining the requested strin:g. $12 is set to
$FF if no more occurrences.

Here is an addition to make the program run smoother: If you add the follow­
ing lines the Apple will pause and display an "@" in the lower right-hand comer
when the screen fills up with text. This will prompt you to hit any key and the
Apple will clear the screen and continue where it left off. This process will con­
tinue until there are no more occurrences of the search item.

32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32600
32610

32620
32630

32640

32650
32660
32670
32680
32690
32700
32710
32720
32730

Hill Program Edit Aid

Change: 32690

IF PEEK{37) < 18 THEN 32700

Add:

32692 VTAB 23:TAB 39:PRINT"@"
32695 KEY= PEEK{-16384): IF KEY< 127 THEN 32695
32697 POKE - 16368,0: call - 936

REM
REM
REM
REM

* *
*
*

REM *
REM *
REM

PROGRAM EDIT AID
ALAN G. HILL

EDIT

* COPYRIGHT (C) 1981 REM
REM
REM
REM
REM *

* MICRO INK, INC.
* CHELMSFORD, MA 01824
* ALL RIGHTS RESE·RVED

*
* •
•
* •
•
*

REM *************************
REM
DIM A$ (30)
INPUT "FIND?",A$: CALL -936: IF A$(1,l)="@" THEN 32630:KK= LEN(A$):

FOR I=l TO KK: POKE 9ll+I, ASC(A$(I,I)): NEXT I
POKE 12,KK-l: GOTO 32650
A$=A$(2, LEN(A$)) :KK= LEN(A$): FOR I=l TO KK STEP 2:J= ASC(A$(I ,I))
-176:JJ= ASC(A$(I+l,I+l))-176
IF J>9 THEN J=J-7: IF JJ>9 THEN JJ=JJ-7: POKE 912+I /2 ,J*l6+JJ: NEXT
I: POKE 12,KK/2-l
POKE 10,912 MOD 256: POKE 11,912/256
CALL 768
IF PEEK (18)>127 THEN 32730:LINE= PEEK (17)+ PEEK (18)*256
LIST LINE
IF PEEK (37)>18 THEN 32730
CALL 846
GOTO 32670
CALL -936: GOTO 32700
END

19

20 BASIC Aids

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0300
0300
0300
0300 A5CA
0302 8506
0304 A5CB
0306 8507
0308 A54C
030A 8503
030C A54D
030E 8504
0310 AOOO
0312 Bl06
0314 38
0315 E902
0317 18
0318 6506
031A 8508
031C A507
031E 6900
0320 8509
0322 AOOl
0324 Bl06
0326 8511
0328 cs
0329 Bl06
032B 8512
0320 A200
032F A903
0331 206403
0334 AOOO
0336 Bl06
0338 DlOA
033A 0003
033C 207F03
033F 207003
0342 90F2
0344 A508
0346 C503
0348 A509
034A E504
034C BOll
034E A508

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

;*********************
;* FIND ROUTINE
;* BY *
;* ALAN G. HILL *
;* *
;* COPYRIGHT(C) 1979 *
;* MICRO INK, INC. *
;*ALL RIGHTS RESERVED*
; * *
;* ROUTINE TO SEARCH *
;* INTEGER BASIC PRO-*
;* GRAMS FOR ALL OCC-*
;* URRENCES OF SPEC!-*
;* FIED ITEMS •••••• *
;*********************

' HILO EPZ $03
HIHI EPZ $04
BSL EPZ $06
BSH EPZ $07
SEAL EPZ $08
SEAH EPZ $09
STRL EPZ $0A
LNL EPZ $11
LNH EPZ $12

' ;****************
;* MAIN PROGRAM *
;****************

ORG $300
OBJ $800

START LOA $00CA
STA BSL
LOA $CB
STA BSH
LOA $4C
STA HILO
LOA $40
STA HIHI

LENGTH LOY 1$00
LOA (BSL),Y
SEC
SBC 4$02
CLC
ADC BSL
STA SEAL
LOA BSH
ADC #$00
STA SEAH
LOY 1$01
LOA (BSL),Y
STA LNL
INY
LOA (BSL),Y
STA LNH
LOX #$00
LOA #$03
JSR INCPNT
LOY 1$00

TTOKEN LOA (BSL) ,Y
CMP (STRL) , Y
BNE NXTOKN
JSR COMPAR

NXTOKN JSR IN~TOK
BCC TTOKEN
LOA SEAL
CMP HILO
LOA SEAH
SBC HIHI
BCS LIMIT
LOA SEAL

;HIMEM LO BYTE
;HIMEM HI BYTE
;BASIC STATEMENT LO
;BASIC STATEMENT HI
;STATEMENT ENDING ADDRESS LO
;STATEMENT ENDING ADDRESS HI
;STRING LO
;LINE NUMBER LO
;LINE NUMBER HI

;SET UP ADDRESS OF FIRST
;BASIC STATEMENT IN
;LOCS 6 AND 7

;SET UP TO STOP SEARCH
;AT HIMEM. COULD BE
;CHANGED TO LIMIT SEARCH
;AT END OF PROGRAM BEING EDITED
;GET STATEMENT LENGTH

;MINUS 2 TO POINT TO

;SET UP STATEMENT ENDING
;ADDRESS IN 8 AND 9
;ADD IN CARRY IF ANY

;SAVE LINE NUMBER IN
;IN 11 AND 12

;ADJUST BSL TO POINT
;TO FIRST TOKEN

;COMPARE TOKEN TO
;FIRST CHARACTERIN
;STRING
;IF NOT EQUAL POINT TO NEXT
;IFEQUAL COMPARE REMAINING CHARS
;POINT TO NEXT TOKEN
;CARRY CLEAR THEN LOOK AT NEXT
;AT END OF STATEMENT.
;CHECK TO SEE IF AT END OF
;SEARCH LIMIT

;CARRY SET = LIMIT OF SEARCH
;SET UP BSL AND BSH TO POINT

0350 8506
0352 A509
0354 8507
0356 A200
0358 A902
035A 206403
0350 0081
035F A9FF
0361 8512
0363 60
0364
0364
0364
0364
0364
0364 18
0365 7506
0367 9506
0369 8507
0368 6900
0360 9507
036F 60
0370
0370
0370
0370
0370
0370 A506
0372 C508
0374 A507
0376 E509
0378 E606
037A 0002
037C E607
037E 60
037F
037F
037F
037F
037F

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

STA BSL
LOA SEAH
STA BSH
LOX f$00
LOA #$02
JSR INCPNT
BNE LENGTH

LIMIT LOA #$FF
STA LNH
RTS

Hill Program Edit Aid

;TO NEXT STATEMENT

;POINT TO LENGTH OF
;STATEMENT BYTE

;ALWAYS BRANCH
;SET UP LARGE LINE NUMBER
;TO INDICATE AT END OF SEARCH
;RETURN TO BASIC

' ;***************************
;*POINTER INCREMENT ROUTINE*
;***************************
' INCPNT CLC

ADC BSL,X
STA BSL,X
LOA BSH,X
ADC #$00
STA BSH,X
RTS

;ROUTINE TO INCREMENT
;POINTERS. ENTER WITH
;XREG = DISPLACEMENT
;FROM
;BSL,BSH
;ACC = INCREMENT AMOUNT

' ;******************************
;*TOKEN ADDR INCREMENT ROUTINE*
;******************************
' INCTOK LDA SSL

CMP SEAL
LOA SSH
SBC SEAH
INC SSL
BNE REXIT
INC SSH

REXIT RTS

' ;**********************
;* COMPARISON ROUTINE *
;**********************
' COMPAR LDY $QC
COMPY LDA (STRL) ,Y

CMP (BSL),Y
SEQ COMPX
LOY f$00
RTS

COMPX DEY

;ROUTINE TO INCREMENT
;THE TOKEN ADDRESS BY 1
;SET CARRY IF AT END
;OF STATEMENT

;ROUTINE TO COMPARE
;REMAINING CHARACTERS
; (C) LENGTH OF CHARACTER
;STRING -1
;RESET YREG

21

037F A40C
0381 BlOA
0383 0106
0385 F003
0387 AOOO
0389 60
038A 88
0388 10F4

100
101
102
103
104
105
106
107
108
109
llO
lll
112
ll3
ll4
115
ll6
117
ll8
119
120
121 BPL COMPY ;FOUND A MATCH! POP STACK ADDRESS

0380 68
038E 68
038F 60

122
123
124

125

PLA
PLA
RTS

END

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LDC. LABEL. LDC. LABEL. LDC.

** ZERO PAGE VARIABLES:

HILO
STRL

0003 HIHI
OOOA LNL

0004 BSL
0011 LNH

** ABSOLUTE VARABLES/LABELS

0006 SSH
0012

;AND RETURN TO BASIC. LINE NUMBER
;IS ALREADY IN LNL AND LNH.

0007 SEAL 0008 SEAH 0009

START 0300
NXTOKN 033F
COMPY 0381

LENGTH 0310 TTOKEN 0336
LIMIT 035F INCPNT 0364
COMPX 038A

INCTOK 0370 REX IT 037E COMPAR 037F

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OOB2

2
1/ 0 ENHANCEMENTS

Introduction

A Little Plus for Your Apple II
Craig Peterson

Zoom and Squeeze
Gary B. Little

A Slow List for Apple BASIC
R.B. Sander-Cederlof

Alarming Apple
Paul Irwin

23

24

25

29

33

37

24

Introduction
The keyboard and video display of the Apple represent the heart of the user inter­
face. Through this interface, most communication between the programmer and
the computer takes place. The following chapter offers some enhancements to the
interface which should make working with your Apple a little bit easier.

"Edit-Plus" by Craig Peterson, gives all the advantages of the Apple II Plus
screen editing system to Apple II standard machines. "Zoom and Squeeze" by
Gary Little provides some further enhancements to the screen editing system
which should speed up program modification sessions considerably.

"Slow-List" by Bob Sander-Cederlof, lets you control the speed at which
integer BASIC output is sent to the screen. And "Alarming Apple" by Paul Irwin
transfers the Apple's speaker into an audio error-alarm from Applesoft BASIC. The
four programs-all in machine language-each demonstrate good interface tech­
niques and should be of particular interest to machine language programmers.

A Little Plus
for Your Apple II

by Craig Peterson

The Apple II Plus with its autostart ROM provides
several useful editing features not found on the
standard Apple II. If you own an Apple II and are
envious of these new features, try EDITPLUS; it
provides you with these features-and more-at
no cost!

25

A while back, Apple Computer, Inc., came out with a new version of their Apple II
computer called the Apple II Plus. In this new machine comes the now famous
Auto-Start ROM, and one of its neat features is a very much improved editing
capability. In particular, for the standard Apple II owner, the 'non-copy' move­
ment of the cursor requires two keystrokes for each column or row moved. (e.g.
'ESC', 'D', 'ESC' , 'D', etc., etc.) Very tedious, and sometimes a bit unreliable.

On an Apple II Plus you just press 'ESC' and then use the I, J, K, or M key for
cursor control up, left, right, and down respectively. And for really great action,
you can use the repeat key along with the I, J, K, M to speed the cursor 'non­
copying' to any position on the screen. To get out of this editing mode, you just
press any key other than the I, J, K or M key. This last key will be handled like a nor­
mal escape function and then you will be out of the special editor. Really nice, huh?

A second feature of the Apple II Plus is the ability to stop program listings. By
pressing 'Ctrl-S' during a listing, that blur of characters will be stopped so you can
read the program. Pressing any key will begin the listing again right where it stop­
ped. This works in both Integer BASIC and Applesoft. It even works in the
Monitor to stop a trace if you wish. In Applesoft, if the second key pressed is a
'Ctrl-C', the listing will be aborted-just as you would expect normally.

Screen Editing

If you would like to be able to do this on your standard Apple II, you can either
purchase the Auto-Start ROM, which has this and other features, or you can use
the EDITPLUS program.

26 110 Enhancements

The EDITPLUS program is not very large and the way it works is fairly sim­
ple. Typing 'Call 768' revises the input and output hooks so that any I/O will be
sent through EDITPLUS. The editing portion of the program, through the input
hook, just looks for an 'ESC' character. If found, the program then checks the next
character to see if it is an I, J, K, or M. If it is, the proper cursor action is performed
and the next character is checked to see if it is an I, J, K, or M, and so on. The first
non-IJKM character causes the program to do a normal escape function and then
exit this mode. To totally disengage from this feature of EDITPLUS, just type
'IN #0', which restores the normal input hook address.

Control-S Feature

The control S feature of EDITPLUS uses the output hook. During any output,
the program checks the keyboard strobe and if a 'Ctrl-S' has been pressed, the out­
put is stopped after the next carriage return. The EDITPLUS waits until a key is
pressed again and at that time the output continues. If the second key is a 'Ctrl-C',
the keyboard strobe is left on so that Applesoft will see the 'Ctrl-C' and abort the
listing. To totally disengage from this feature of EDITPLUS, just type 'PR#O',
which restores the normal output hook address.

An additional feature which I've added to all of this is escape L. By typing
'ESC' 'L', you leave whatever BASIC you are in and jump to the Monitor, which is
much quicker and easier than typing Call-151 all the time.

Program Explanation

The assembly program listing for EDITPLUS is fairly self-explanatory. This
example is assembled at good old page 3, hex address $300, but it could be
anywhere you want. Also, this example is set up for use with 3.2 DOS on a 48K
system. If you have 3.1 DOS and 48K memory, use DOS addresses $A7AD and
$A99E in place of $A851 and $AASB in lines 200, 210, 400, 640, and 690. If you
have less than 48K, adjust these addresses downward a commensurate amount.
Also, 3.1 DOS is peculiar in that it won't allow you to BRUN EDITPLUS right off
the disk. You must BLOAD it, and then Call 768. If you don't have a disk system,
simply change line 400 to RTS and delete lines 640, 680, and 690. If this change is
made, it will be necessary to reassemble the program, or pad the revised lines with
NOPs ($EA), because the branch addresses will change.

So there you have it-a nice edit program for your Apple II. No longer do you
need to be jealous of those folks that have an Apple II Plus. You too can have fun
editing (and TRACE and STEP too, heh! heh!) .

Update

Since the original publication of the EDITPLUS program, I've added a few
more features. Here is the disassembled listing of a slightly more enhanced
"EDITPLUS2." All of the original features are the same and I've included the
following additions:

1) 'ESC' 'H' will clear and home the screen.

Peterson A Little Plus 27

2) 'ESC' 'P' will perform a POKE 33,33 to change the screen width to 33
columns for easier editing of literals (string values inside of quote marks).

3) 'ESC' 'N' returns the screen width to a normal 40 columns.

The program is set up for use with 48K RAM and 3.2 DOS. To revise it for
other configurations, consult the article for necessary changes.

It sure makes editing easier, and it works in Integer BASIC, Applesoft and in
the Monitor. Also, the enhancements make it valuable for owners of Apple II Plus
computers.

0800 1 ;********************************
0800 2 ; * *
0800 3 ;* EDIT PLUS *
0800 4 ; * CRAIG PETERSON *
0800 5 ; * *
0800 6 ;* EDIT PLUS *
0800 7 ; * *
0800 8 ; * COPYRIGHT (C) 1981 *
0800 9 ; * MICRO INK, INC. *
0800 10 ; * ALL RIGHTS RESERVED *
0800 11 ; * *
0800 12 ;*A PROGRAM TO GIVE THE STANDARD*
0800 13 ;* APPLE II THE ENHANCED CURSOR *
0800 14 ;* EDITING CAPABILITIES OF THE *
0800 15 ;* APPLE II PLUS *
0800 16 ;* *
0800 17 ;********************************
0800 18 .
0800 19 WNWD EPZ $21
0800 20 CH EPZ $24
0800 21 BASL EPZ $28
0800 22 YSAV EPZ $35
0800 23 CSWL EPZ $36
0800 24 CSWH EPZ $37
0800 25 KSWL EPZ $38
0800 26 KSWH EPZ $39
0800 27 DOS EQU $A851
0800 28 YDOS EQU $AA5B
0800 29 KBRD EQU $COOO
0800 30 STRB EQU $C010
0800 31 ESCl EQU $FC2C
0800 32 CEOP EQU $FC42
0800 33 RKEY EQU $FDOC
0800 34 OUT l EQU $FDFO
0800 35 KEYN EQU $FD1B
0800 36 MNTR EQU $FF65
0800 37
0300 38 ORG $300
0300 39 OBJ $800
0300 40 .
0300 A913 41 BGIN LDA #$13 CHANGE
030 2 8538 42 STA KSWL OUTPUT POINTERS
0304 A903 43 LDA #$03 TO NEW ROUTINE
0306 8539 44 STA KSWH AT 'SKEY' AND
0308 A969 45 LDA #$69 'SVID' RESP.
030A 8536 46 STA CSWL
030C A903 47 LDA #$03
030E 8537 48 STA CSWH
0310 4C51A8 49 JMP DOS CHANGE DOS POINTERS & RETURN
0313 201BFD 50 SKEY JSR KEYN GET NEXT CHARACTER
0316 C99B 51 CMP #$98 IS CHARACTER = 'ESC'?
0318 FOOB 52 BEQ ESC2 IF SO, GO TO ESC2
031A 60 53 RTS IF NOT, RETURN
0318 38 54 SPCL SEC PREPARE A POINTER AND
031C E9C9 55 SBC #$C9 TURN I,J,K, AND M
031E AS 56 TAY INTO A,B,C, AND D,
031F B98C03 57 LDA TABL,Y RESPECTIVELY ••
0322 202CFC 58 JSR ES Cl DO STANDARD ESCAPE

28 IIO Enhancements

0325 A424 59 ESC2 LDY CH ;GET THE NEXT INPUT
0327 8128 60 LDA (BASL), Y ; CHARACTER •••••
0329 48 61 PHA
032A 293F 62 AND #$3F
032C 0940 63 ORA #$40
032E 9128 64 STA (BASL) , Y
0330 68 65 PLA
0331 201BFD 66 JSR KEYN
0334 C9C8 67 CMP #$CS ;IS CHAR = 'H'?
0336 D002 68 BNE SKIP ;IF NOT=H, SKIP
0338 A9CO 69 HOME LDA #$CO ;IF IS, LOAD '@'

033A C9DO 70 SKIP CMP f$DO ;IS CHAR = Ip I?
033C F018 71 SEQ POKE ;IF IS, --> POKE
033E C9CE 72 CMP #$CE ;IS CHARACTER >= 'NI?
0340 FOlO 73 SEQ NRML ;IF='N', GOTO NORML
0342 8019 74 BCS RTRN ;IF> 'N', GOTO RETRN
0344 C9C9 75 CMP f$C9 ;IS CHARACTER < I I'?
0346 9015 76 sec RTRN ' IF SO, RETURN.
0348 C9CC 77 CMP #$CC ;IS CHARACTER = IL I?
034A DOCF 78 BNE SPCL ;IF <> 'L' I DO SPCL.
034C 2051A8 79 JSR DOS ;IF = 'L', RESET DOS
034F 4C65FF 80 JMP MNTR ; POINTERS AND JUMP TO MNTR.
0352 A928 81 NRML LDA #$28 ;NORMAL SCREEN
0354 D005 82 BNE CONT ; WIDTH=$28 (40)
0356 2042FC 83 POKE JSR CEOP ;CLEAR TO EOP &
0359 A921 84 LDA #$21 POKE 33,33
0358 8521 85 CONT STA WNWD ;STORE->WINWIDTH
035D 38 86 RTRN SEC ;CHAR. IS NOT I,J,K, OR M,
035E 202CFC 87 JSR ESCl ' SO DO A STANDARD ESC.
0361 A424 88 LDY CH ;CORRECT YSAVE REGISTER IN
0363 8CSBAA 89 STY YDOS ; DOS AND RETURN •••
0366 4COCFD 90 JMP RKEY
0369 8435 91 SVID STY YSAV ;SAVE Y.
0368 C98D 92 CMP #$8D ;IS CHARACTER A CR?
036D D018 93 BNE RETN ;IF NOT, RETURN.
036F ACOOCO 94 LDY KBRD ;GET KEYBOARD CHARACTER.
0372 1013 95 BPL RETN ;NO STROBE, RETURN.
0374 C093 96 CPY #$93 ;IS IT CTRL IS I?

0376 DOOF 97 BNE RETN ;IF NOT, RETURN.
0378 2Cl0CO 98 BIT STRB ;CLEAR KEYBOARD STROBE
037B ACOOCO 99 AGIN LDY KBRD ;IS KEY PRESSED?
037E lOFB 100 BPL AGIN ;IF NOT, TRY AGAIN!
0380 C083 101 CPY #$83 ;IS IT CTRL 'C'?
0382 F003 102 BEQ RETN ;IF SO, LEAVE STROBE
0384 2Cl0CO 103 BIT STRB ;CLEAR KEYBOARD STROBE
0387 A435 104 RETN LDY YSAV ;RESTORE Y AND REJOIN
0389 4CFOFD 105 JMP OUT! ; OUTPUT ••••
038C 106 ' 038C C4C2Cl 107 TABL HEX C4C2ClFFC3
038F FFC3

108 END

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

WNWD 0021 CH 0024 BASL 002S YSAV 0035 CSWL 0036 CSWH 0037
KSWL 0038 KSWH 0039

** ABSOLUTE VARAS LES/LABELS

DOS A851 YDOS AA5B KBRD cooo STRB COlO
ESCl FC2C CEOP FC42 RKEY FDOC OUT! FDFO KEYN FDlB MNTR FF65
BGIN 0300 SREY 0313 SPCL 0318 ESC2 0325 HOME 0338 SKIP 033A
NRML 0352 POKE 0356 CONT 0358 RTRN 035D SVID 0369 AGIN 0378
RETN 0387 TABL 038C

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0112

29

Zoom And Squeeze
by Gazy B. Little

A short program for the Apple II that makes it easier to
edit BASIC programs. ZOOM provides a fast way to
copy over a program line; SQUEEZE changes the screen
width to 33 characters and eliminates embedded
blanks.

ZOOM and SQUEEZE is a short machine-language routine written for the Apple
microcomputer to facilitate the editing of BASIC programs. It recognizes two
commands: CTRL-Q and CTRL-Z. The CTRL-Q command causes the screen win­
dow width to be automatically set to 33 and the CTRL-Z command causes the cur­
sor to quickly copy over all text from its current position to the end of the line.

The ZOOM Feature

In order to edit a program line on the Apple it is nesessary to do more than
simply move the cursor directly to the area to be changed, make the changes, and
then press RETURN. The required procedure is to position the cursor at the begin­
ning of the line number, copy down to the area to be changed (by using the right­
arrow and repeat keys), make the changes, enter the edited line. If the line is a very
long one, the copying-over part of this procedure takes up an enormous amount of
time, which can be better used for other purposes.

The 'ZOOM' part of the ZOOM and SQUEEZE routine can be used to speed
up this copying tremendously. By simply pressing CTRL-Z the cursor can be
moved virtually instantaneously from its current position to the right edge of the
current line, while automatically copying over all the text on the screen in be­
tween. For example, copying over a program line that takes up three lines on the
video screen takes only six quick steps after the cursor has been positioned at the
beginning of the line number: CTRL-Z, right-arrow, CTRL-Z, right-arrow, CTRL-Z,
RETURN. This takes approximately 2 seconds to accomplish. By the way of con­
trast, copying over the line in the ordinary way by using the right-arrow key in
conjunction with the repeat key takes approximately 13 seconds (see the NOTE) .

It is clear, then, that this feature could save hours of debugging time for a busy
programmer.

30 110 Enhancements

The SQUEEZE Feature

When a line of a BASIC program is listed on the video screen with the window
width set at its default value of 40 columns, the output is carefully formatted by
the Apple by embedding blanks on the left and right side of the listing. That is to
say, there is not a continuous 'wraparound' display of the information that you
typed in to create the line. For example, if you enter the line

100 PRINT "THIS IS AN EXAMPLE OF A FORMATIED LISTING'

and then LIST it, the Apple will respond with

100 PRINT "THIS IS AN EXAMPLE OF AF**
****ORMATIED LISTING"

where a '*' indicates an embedded blank. This formatting technique makes it very
easy to r.ead a LISTed line, but it can create a minor problem when it becomes
necessary to edit the line.

The problem arises when, as in the example, the blanks are embedded
between the quotation marks associated with a PRINT statement. If this line is to
be edited without retyping it from scratch, the right-arrow key (in conjunction
with the repeat key) must be used to copy over substantial portions of the line and
by so doing all 6 of the embedded blanks between 'F' and 'ORMATTED' will
mysteriously appear in the argument of the PRINT statement unless they are skip­
ped over by performing pure-cursor movements, that is, repeated ESC-A com­
mands or, for AUTOSTART ROM users, repeated K commands after ESC has been
pressed. The need to perform these pure-cursor movements is annoying and
inconvenient, to say the least.

This problem can be avoided if the window width is 'squeezed' to 33 columns
before LISTing the line and editing it. If this is done, the embedded blanks disap­
pear and the line can be edited without worrying about the need to perform pure­
cursor movements.

The window width can be changed to 33 by entering the command POKE
33,33 from BASIC immediate-execution mode. However, with the ZOOM and
SQUEEZE routine in effect, all you need to do is press CTRL-Q. The width can be
returned to its default value of 40 by simply entering the command TEXT from
immediate-execution mode.

How ZOOM and SQUEEZE Works

ZOOM and SQUEEZE can be activated by BRUNning it from disk or by
loading it, entering the command 300G from the monitor, and then returning to
BASIC. The routine resides from $300 to $33A.

After it has been activated, the Apple's input hook at $38 (low), $39 (high) is
set equal to the ZOOM and SQUEEZE entry point at $309. Thereafter, all
keyboard input is checked to see whether CTRL-Q or CTRL-Z has been pressed; if
not, then nothing special happens.

Little Zoom and Squeeze 31

If CTRL-Q is pressed, the short subroutine beginning at $310 and ending at
$316 is executed. All this subroutine does is store $21 (decimal 33) at location
$21. This is the location in the monitor that contains the current window width.
A blank is then displayed on the screen to indicate that this has occurred.

If CTRL-Z is pressed, the subroutine beginning at $317 is executed. What hap­
pens then is that the characters displayed on the screen from the current cursor
position to the end of the line are placed in the input buffer one-by-one. If the
buffer is overflowing, the program line will be backslashed and cancelled in the
ordinary way.

Details of the programming algorithms involved can be easily deduced by
inspecting the accompanying source listing for ZOOM and SQUEEZE.

NOTE: It is possible to speed up the repeat-key function by soldering a lOOK
resistor in parallel to the resistor at position R4 on the Apple keyboard unit. For
details, see the article "Repeat Key Speed-Up" by V.R. Little in the February 1980
edition of APPLEGRAM, the newsletter of the Apples British Columbia Computer
Society, Vancouver, B.C.

0800 1 ;*********************
0800 2 ; * ZOOM AND SQUEEZE *
0800 3 ; * GARY LITTLE *
0800 4 ; *
0800 5 ;* ZOOM *
0800 6 ; * *
0800 7 ; * COPYRIGHT(C) 1980 *
0800 8 ;* MICRO INK, INC. *
0800 9 ;*ALL RIGHTS RESERVED*
0800 10 ; * *
0800 11 ;* PROGRAM EXTENDING *
0800 12 ;* EDITING FEATURES *
0800 13 ; * OF THE APPLE •••
0800 14 ;*********************
0800 15
0800 16 .
0800 17 WIDTH EPZ $21 WINDOW WIDTH
0800 18 CH EPZ $24 HORIZONTAL CURSOR POSITION
0800 19 BASL EPZ $28 SCREEN BASE ADDRESS POINTER
0800 20 KSWL EPZ $38 INPUT HOOK (LO)
0800 21 .
0800 22 IN EQU $0200 ;INPUT BUFFER
0800 23 KE YIN EQU $FD1B ;KEYPRESS ROUTINE
0800 24
0800 25
0300 26 START ORG $300 ;MAIN PROGRAM
0300 27 OBJ $800
0300 28
0300 A909 29 LOA #INHK ;SET INPUT HOOK
0302 8538 30 STA KSWL ; TO INHK ($309)
0304 A903 31 LDA /INHK
0306 8539 32 STA KSWL+l
0308 60 33 RTS
0309 34

32 110 Enhancements

0309 35 ;*******************
0309 36 ;*ZOOM/SQUEEZE SUBS*
0309 37 ;*******************
0309 3S
0309 201BFD 39 INHK JSR KEY IN GET A CHARACTER
030C C991 40 CMP #$91 CTRL-Q PRESSED?
030E D007 41 BNE CTRLZ IF NOT, CHECK FOR CTRL-Z
0310 A921 42 LDA #$21 CHANGE WINDOW WIDTH
0312 S521 43 STA WIDTH TO 33
0314 A9AO 44 LDA #SAO OUTPUT A SPACE
0316 60 45 RTS
0317 46 .
0317 C99A 47 CTRLZ CMP #$9A ;CTRL-Z PRESSED?
0319 DOlF 4S BNE RTSl ;IF NOT, RETURN
031B A424 49 LOOP LDY CH ;TAKE A CHARACTER
031D Bl2S 50 LDA (BASL), Y ; OFF VIDEO SCREEN
031F 4S 51 PHA
0320 E624 52 INC CH
0322 E624 53 INC CH
0324 A524 54 LDA CH ;IF CURSOR POSITION IS
0326 C521 55 CMP WIDTH ; AT FAR RIGHT,
0328 BOOB 56 BCS FIN ; THEN FINISHED
032A C624 57 DEC CH
032C 6S 5S PLA ;STORE CHARACTER
032D 9D0002 59 STA IN,X ; IN INPUT BUFFER
0330 ES 60 INX
0331 DOES 61 BNE LOOP GET ANOTHER CHARACTER OFF SCREEN
0333 CA 62 DEX BUFFER FULL
0334 60 63 RTS SO RETURN
0335 6S 64 FIN PLA
0336 C624 65 DEC CH SET PROPER CHARACTER
033S C624 66 DEC CH POSITION AND
033A 60 67 RTSl RTS RETURN

6S END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *

* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

WIDTH 0021 CH 0024 BASL 0028 KSWL 0038

** ABSOLUTE VARABLES/LABELS

IN 0200 KE YIN FDlB
START osoo INHK 0309 CTRLZ 0317 LOOP 0318 FIN 0335 RTSl 033A

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0072

A Slow List
for Apple BASIC

by R.B. Sander-Cederlof

The speed at which listings are produced can be
controlled in Applesoft via the speed command. But
unfortunately no similar control exists for Integer
BASIC. Slow list takes care of this problem, and
provides several other useful control features.

33

One of the nicest things about Apple BASIC is its speed. It runs circles around
most other hobby systems! Yet there are times when I honestly wish it were a
little slower.

Have you ever typed in a huge program, and then wanted to review it for
errors? You type "LIST", and the whole thing flashes past your eyes in a few
seconds! That's no good, so you list in piecemeal-painfully typing in a long series
like:

List 0,99
List 100,250

LIST 21250,21399

As the reviewing and editing process continues, you have to type these over and
over and over . . . Ouch!

In a meeting of the Dallas area "Apple Corps" several members expressed the
desire to be able to list long programs slowly enough to read, without the extra
effort of typing separate commands for each screen-full. One member suggested
appending the series of LIST commands to the program itself, with a subroutine to
wait for a carriage return before proceeding from one screen-full to the next. For
example:

34 IIO Enhancements

9000 LIST 0,99:GOSUB 9500
9010 LIST 100,250: GOSUB 9500

9250 LIST 21250,21399:GOSUB 9500
9260 END
9500 INPUT A$:RETURN

While this method will indeed work, it is time-consuming to figure out what
line ranges to use in each LIST command. It is also necessal'Y to keep them up-to­
date after adding new lines or deleting old ones.

The Slow List Program

But there is a better way! I wrote a small machine language program which
solves the problem. After this little 64-byte routine is loaded and activated the
LIST command has all the features needed:

1 . The listing proceeds at a more leisurely pace, allowing you to see what is
going by.

2. The listing can be stopped temporarily, by merely pressing the space bar.
When you are ready, pressing the space bar a second time will cause the
listing to resume.

3. The listing can be aborted before it is finished by typing a carriage return.

The routine as it is now coded resides in page three of memory, from $0340 to
$037F. It is loaded in the usual way (BLOAD Slow List).

After the routine is loaded, you return to BASIC. The slow-list features are
activated by typing "CALL 887". They may be de-activated by typing "CALL
878" or by hitting the RESET key.

How It Works

The commented assembly listing should be self-explanatory, with the excep­
tion of the tie-in to the Apple firmware. All character output in the Apple funnels
through the same subroutine: COUT, at location $FDED. The instruction at
$FDED is JMP ($0036) . This means that the address which is stored in locations
$0036 and $0037 indicates where the character output subroutine really is.

Every time you hit the RESET key, the firmware monitor sets up those two
locations to point to $FDFO, which is where the rest of the COUT subroutine is
located. If characters are supposed to go to some other peripheral device, you
would patch in the address of your device handler at these same two locations. In
the case of the slow-list program, the activation routine merely patches locations
$0036 and $0037 to point to $0340. The de-activation routine makes them point
to $FDFO again.

Sander-Cederlof Slow List 35

Every time slow-list detects a carriage return being output, it calls a delay
subroutine in the firmware at $FCA8. This slows down the listing. Slow-list also
keeps looking at the keyboard strobe, to see if you have typed a space or a carriage
return. If you have typed a carriage return, slow-list stops the listing and jumps
back into BASIC at the soft entry point ($E003). If you have typed a space, slow­
list goes into a loop waiting for you to type another character before resuming the
listing.

That is all there is to it! Now go turn on your Apple, type in the slow-list
program, and list to your heart's content!

0800 1 ;*********************
0800 2 ;* *
0800 3 ;* SLOW LIST
0800 4 ;* B.SANDER-CEDERLOF *
0800 5 ;*
0800 6 ;* SLOW LIST *
0800 7 ;* *
0800 8 ;* COPYRIGHT(C) 1978 *
0800 9 ; * MICRO INK, INC. *
0800 10 ;*ALL RIGHTS RESERVED*
0800 11 ; '* *
0800 12 ;* ROUTINE TO SLOW
0800 13 ; * DOWN INT. BASIC *
0800 14 ; * LISTINGS ••••••• *
0800 15 ; * *
0800 16 ;*********************
0800 17
0800 18
0800 19
0340 20 ORG $340 ;MAIN PROGRAM
.0340 21 OBJ $80 0
0340 22 ,
0340 C98D 23 SLOW CMP #$8D ;CHECK IF CHAR IS CARRIAGE RETURN
0342 DOlA 24 BNE CHROUT ;NO, SO GO BACK TO COUT
0344 48 25 PHA ;SAVE CHARACTER ON STACK
0345 2COOCO 26 BIT $COOO ;TEST KEYBOARD STROBE
0348 lOOE 27 BPL WAIT ;NOTHING TYPED YET
034A ADOOCO 28 LDA $COOO ;GET CHARACTER FROM KEYBOARD
034D 2Cl0CO 29 BIT $C010 ;CLEAR KEYBOARD STROBE
0350 C9AO 30 CMP #SAO ;CHECK IF CHAR IS A SPACE
0352 FOlO 31 BEQ STOP ;YES - STOP LI STING
0354 C98D 32 CMP #$8D ;CHECK IF CHAR IS CARRIAGE RETURN
0356 F009 33 BEQ ABORT ;YES - ABORT LISTING
0358 A900 34 WAIT LDA #$00 ;MAKE A LONG DELAY
035A 20A8FC 35 JSR $FCA8 ;CALL MONITOR DELAY SUBROUTINE
035D 68 36 PLA ;GET CHARACTER FROM STACK
035E 4CFOFD 37 CHROUT JMP $FDFO ;REJOIN COUT SUBROUTINE
0361 4C03EO 38 ABORT JMP $E003 ;SOFT ENTRY INTO APPLE BASIC
0364 2COOCO 39 STOP BIT $COOO ;WAIT UNTIL KEYBOARD STROBE
0367 lOFB 40 BPL STOP ;APPEARS ON THE SCENE
0369 8Dl0CO 41 STA $C010 ;CLEAR THE STROBE
036C 30EA 42 BMI WAIT ;UNCONDITIONAL BRANCH
036E 43 .
036E 44 ;**********************
036E 45 ;* SUBROUTINE TO DE- *
036E 46 ;* ACTIVATE SLOW LIST *
036E 47 ;**********************
036E 48 ,
036E A9FO 49 OFF LDA #$FO ;RESTORE $FDFO TO
0370 8536 50 STA $36 ;LOCATIONS $36 AND $37
0372 A9FD 51 LDA #$FD
0374 8537 52 STA $37
0376 60 53 RTS
0377 54

36 110 Enhancements

0377 55 ·**********************
0377 56 ;* SUBROUTINE TO *
0377 57 ;* ACTIVATE SLOW LIST *
0377 58 ;**********************
0377 59
0377 A940 60 ON LDA #$40
0379 8536 61 STA $36
037B A903 62 LDA #$03
037D 8537 63 STA $37
037F 60 64 RTS
0380 65

66 END

***** END OF ASSEMBLY

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

** ABSOLUTE VARABLES/LABELS

;SET $340 INTO
;LOCATIONS $36 AND $37

SLOW
ON

0340 WAIT
0377

0358 CHROUT 035E ABORT 0361 STOP 0364 OFF

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:004A

036E

Ed. note: To make compatible with DOS, change locations 36 and 37 (COUT
Hooks) to locations AA53 and AA54 (DOSCOUT Hooks) . This has been done on
your disk.

Alarming Apple
by Paul Irwin

Have you ever wanted to trap your errors in a way so
complete and so foolproof that it would be absolutely
impossible to miss them? Well here it is-the Alarming
Apple routine! Using this routine, the Apple will
respond to any program error with a keyboard lockout
and a two-tone alarm. This is a great enhancement to
the Apple's error recovery capabilities!

37

Instead of using the CTRL-G beep on your next program, here's an alarm system
written to assist in performing error recovery on the Apple II. When the alarm
system is used, your program will react to an error by immediately locking the
keyboard, sounding a continuous two-tone alarm, and forcing the operator's
attention to an error recovery subroutine. No way will recognizable errors escape
your edits once they meet the Alarming Apple!

To use the alarm system, start with each of your subroutines clearly defined
as either error detecting or error correcting. This means that you will classify most
of your "normal" routines as error detecting routines. Arrange to have all of your
routines invoked by a mainline. Then the mainline can invoke error correcting
routines, as well, and still remain in control. This is illustrated by the program.

In the BASIC listing, the one error detecting routine is called TASK, while the
error correcting routine is TRAP. The mainline is free to decide what to do after
recovery: whether to continue the same error detecting routine or to take any
other action. An intelligent mainline of this sort can avoid most error recovery
hassles.

The key to the error recovery procedure is a machine language routine called
ALARM. It is invoked from BASIC by executing a CALL 3529 and from machine
language by executing a JSR $0C9. The alarm routine will then generate a two­
tone alarm continuously. At the end of each cycle, it examines the keyboard for a
CTRL-C. If none was found, it continues sounding the alarm. But when a CTRL-C
is typed, the sound will stop and the routine will return. The effect is to produce a
continuous sound, ignoring any input, until a CTRL-C is entered.

You may have your own ideas as to how the alarm should sound. The dura­
tion of the first tone is in $0A2 and its period is in $090. The second tone has its

38 J/O Enhancements

duration and pitch stored in $DBF and $OBA. The two that I employ are quite
noisy, but you can experiment with other parameter pairs. Those periods that are
relatively prime-having no common factor-will produce discord. They will be
loudest when matching the Apple's speaker resonance.

When loading the routines, remember to set LOMEM greater than $000, the
highest location in the alarm routine, so the two won't overwrite each other. The
BASIC routine shown here will run as it appears, and will invoke the machine
language routine. If you are not bothering with the BASIC, simply JSR $DC9.

After you run the Alarming Apple and decide to use it for error recovery in
your next program, consider these ideas:

Organize the program into error detecting routines, one or more error
recovery routines, and an intelligent mainline.

Use an error flag in the recovery routines to inform the mainline.

Use a status flag in the error recovery routines to indicate success or failure of
the recovery procedure to the mainline.

Let the mainline make all decisions regarding what to do next.

For instance, if you are heavily into structured programming, you might con­
sider a mainline centered on a computed GOSUB with the returns of each routine
setting a status number pointing to the next routine. Or you may want to use IFs
and GOSUBs together in the mainline as each case is decided. The important
thing is to route all control decisions-decisions that answer the question: ' 'What
next?11-through the mainline, including error recovery decisions; in fact,
especially error recovery decisions.

0800 l ;*************************
08 00 2 ; * *
0800 3 ;* ALARMING APPLE *
08 00 4 ; * BY *
08 00 5 ; * PAUL IRWIN *
08 00 6 ; *
0800 7 ; * ALARM *
08 00 8 ; *
0800 9 ; * COPYRIGHT (C) 1981 *
0800 10 ; * MIC RO INK, INC. *
0800 11 ; * ALL RI GHTS RESERVED *
08 00 12 ; * *
0800 13 ;****************~********
08 00 14
OD83 15 ORG $0D 8 3
OD83 16 OBJ $800
OD83 17
OD83 18
OD83 AD30CO 19 LDA $C030
OD86 88 20 DEY
OD87 D0 05 21 BNE $ 0D8E
OD 89 CE820D 22 DEC $0D82
OD8C F009 23 BEC' SOD97

1
3
4
6
7

10
95
96
9 7
98
99

Irwin

00 8 E CA 24 DEX
OD8F OOF5 25 BNE $0086
0091 AE8100 26 LOX $00 81
0094 4C8300 27 JMP $0083
0097 60 28 RTS
009e AOOO 29 LOY #$00
009A A200 30 LOX #$00
OD9C A947 31 LOA #$47
009E 808100 3 2 STA $0081
001'.l A9AO 33 LOA #SAO
OOA3 808200 34 STA $0082
OOA6 20830D 35 J S R SCD83
ODA9 2COOCO 36 BI T scooo
ODAC 1007 37 BPL S00 85
ODAE ADOOCO 38 LDA $COCO
008 l 2C lCCO 39 BIT $C01 0
ODB4 60 4 0 RTS
ODB5 AOOO 4 1 LOY #$ 0 0
ODB7 A200 4 2 LDX #$ 00
ODB9 A960 4 3 LOA #$6 0
0088 808100 44 STA $0D81
ODB E A9AO 45 LDA #SAO
ODCO 8D82CD 46 STA $0D82
OOC 3 208300 47 JSR SOD83
ODC6 4C980D 48 JMP $0098
OOC9 209 8 00 49 JSR $0098
ODCC C98 3 50 CMP #$8 3
OOC E OOF9 51 BNE $0DC9
ODDO 6 0 5 2 RTS

5 3 END

REM ******************************
REM * SAMPLE BASIC CALL SEQUENCE *
REM * FOR ALARM PROMPT ROUTINE
REM ******************************
REM
TASK=3000:0FF=O:TASK=200:TRAP=300:ALARM=3529
REM
REM ********************
REM MAIN LINE SEQUENCE
REM ********************
REM
ERR=OFF: GOSUB TASK: IF ERR THEN GOSUB TRAP
GOTO 32767: REM *** BOGUS LINE # ***
REM
INPUT ERR: REM
REM

*** USE FOR TEST ***

REM
REM
REM
REM
REM
RETURN
REM

PUT ERROR DETECTING
HERE --- REPLACING
LINE 210 ••••••••••

Alarming Apple

100
110
120
200
210
211
21 2
21 3
21 4
215
220
2 99
300 POKE 50,1 27 : PRINT "ERROR";: POKE 5 0 ,255: PRINT" TYPE A CTRL/ C": CALL

ALARM
32 0 REM
3 21 REM
32 2 REM
323 REM
34 0 RETURN

PUT ERROR RECOVERY
ROUTINE HERE ••••••

39

3
RUNTIME UTILITIES

Introduction

Data Statement Generator
Virginia Lee Brady

An Edit Mask Routine in Applesoft BASIC
Lee Reynolds

Business Dollars and Sense in Applesoft
Barton M. Bauers, fr.

Lower Case and Punctuation in Applesoft
fames D. Childress

41

42

43

47

SS

62

42

Introduction
Runtime utilities assist the actual execution of a program. This chapter contains
four articles, each containing an Applesoft BASIC runtime utility program. ''Data
Statement Generator" by Virginia Lee Brady presents an interesting discussion of
the Applesoft data statement, and provides a method for generating these
statements from within your Applesoft program. The "Edit Mask" article by Lee
Reynolds discusses the benefits of the formatting "masks" found in many high­
level computer languages-and then shows how these can be implemented on the
Apple. "Business Dollars and Sense" by Barton Bauers addresses the issue of
rounding and formatting problems in business programs and posts an interesting
solution to these problems. And ''Lower Case and Punctuation in Applesoft'' pro­
vides a simple and easy-to-use method of inputting lowercase letters and reserved
punctuation marks into a BASIC character string. The routines presented in this
chapter should find considerable use in practical programming applications.

43

Data Statement Generator
by Virginia Lee Brady

The BASIC "DATA" statement is extremely useful for
storing data tables within a program. If the data is
generated by a program, however, the usefulness of the
Applesoft "DATA" statement declines significantly­
unless you have a method to directly generate data
statements under program control. This data statement
generator provides such a method.

I had just finished adding several new data statements to a sewing program of
mine that utilized a number of data statements, and now I was reading the infor­
mation into their respective arrays. "BEEP," said the Apple, "***SYNTAX
ERROR. 1 1 I found the offending line; I'd left out one of the elements and Applesoft
would not accept ''RED'' as a value for ''YARDS.'' I entered the line again and this
time I typed the wrong line number and erased my previous line. There ought to
be a way, I decided, to let the Apple keep track of these things. I experimented
with input statements, and while these allowed me to update the arrays, I
couldn't save the information.

Using the information from Jim Butterfield's article on " PET BASIC"
(MICR0:7) and the information in the Applesoft Manual, I developed a program
that " writes" its own data statements. This routine automatically increments
the line numbers and inputs the data elements in response to appropriate prompts.
It's all POKEd into place and becomes a permanent part of the program.

How Applesoft is Stored

The BASIC program begins at $801 (2049 decimal) and there are only two
bytes between the end of the program and the start of the simple variable table
which begins at LOMEM:. Anytime a BASIC line is entered, altered, or deleted,
the value of LOMEM: is changed and the program must be rerun to incorporate
this new value. Therefore, LOMEM: must be set at some value past the end of the
program to allow for expansion of the program without writing on top of the
variable table.

To use this routine it is also necessary to recognize the following locations of
a data statement in Applesoft:

44 Runtime Utilities

2 bytes-pointer to next line of BASIC (to next pointer)
2 bytes-hex equivalent of the line number
1 byte-"83"-token for "DATA"
N bytes-ASCII equivalents of the program line
1 byte-"00"-indicates the end of the line

Then the sequence starts again until there are two bytes of "00" in the first two
positions (total of three "00" bytes in a row.)

The Program

The program uses the fact that the locations $AF.BO (175-176 decimal) hold
the value of the location where the next line number would go; or put another
way, two less than this is where the "pointer to next line" would go. Call this
PSN (for position). Thus the values to be POKEd into PSN and PSN + 1 are the low
and high order bytes of the hex equivalent of LINE number. Then the DATA token
(131 in decimal) is placed in PSN + 2. Since this program was designed to handle
several elements in one data statement, a series of strings is next input as one
string array. (It could just as easily have been done as several "INPUT A$" 's, but
using an array allows you to change a string before it is POKEd into memory.) This
is handled in lines 1035-1045. If there are no further changes, then the individual
strings are concatenated into one long string with commas separating the in­
dividual substrings. Next this string is POKEd, one ASCII value at a time, into
PSN +I+ 2; then the "O" is POKEd into the end as the terminator.

Since PSN + 1 + 3 is the start of the next line (remember the value of I was
incremented one extra time in the FOR-NEXT loop), call this NUMBER, convert
it into hex, and POKE it into PSN-2 and PSN-1. If the program is to be continued,
PSN is given the value of NUMBER+ 2 and the sequence restarted. If this is to be
the last entry, then place "O" into NUMBER and NUMBER+ 1. All that remains
is to reset the $AF.BO pointers to reflect the new value of the end of the program
(NUMBER+2). This is done in line 1085.

List the program-the new data statement is in place at the end of the pro­
gram and can be read into the necessary string of numeric variables. If you want to
use this program as a subroutine to an existing data program, where you already
have some data statements being read in, you could use the fact that $7B. 7C gives
the line from which data is being read. Then insert a statement that sets LINE
equal to PEEK(l23) +PEEK(124)*256.

If your program uses trailers, then have a TRAILER$ that is the same as your
trailer line (eg. "0,0,0,0"). To write over this, set PSN equal to
PSN-6-LEN(TRAILER$) and your first data statement will start that much earlier
and replace this trailer. At the end of the program, handle this as before and POKE
the TRAILER$ into place ... This way every time you update your program, the
original trailer is "erased" and re-appended after the last data statement.

Brady Data Statement 45

Notes and Cautions

It is important to remember that the line numbers you insert this way must
be greater than those of an existing program line. If not, they will be placed at the
end of the program, but will not be recognized as legitimate line numbers. (If you
try to erase or list it, Applesoft, not finding it between the next lower and next
greater line numbers will think it does not exist.) Also, do not try to Control-C out
of the program once it has started the "POKEing" portion, since the pointers
would be incorrect at this point and Applesoft would not know where to find the
end of the program.

Original Last Line First Added Line New Last Line

POINT LOW 08 1000 PSN-2 OA 2000 PSN-2 40 1234
POINT HIGH 10 1001 PSN-1 20 2001 PSN-1 12 1235
LINE LOW 64 1002 PSN 65 2002 PSN 66 1236
LINE HIGH 00 1003 PSN + 1 00 2003 PSN+l 00 1237
"DATA" 83 1004 PSN+2 83 2004 PSN+2 83 1238
data xx 1005 PSN+3 xx 2005 PSN+3 xx 1239

xx 1006 PSN +I+3 xx 2006 PSN +I+3 xx 123A
"END" 00 1007 xx 2007 xx 123B
NEXT LOW 00/02 1008 xx 2008 xx 123C
NEXT HIGH 00/02 1009 "END" 00 2009 xx 123D
Orig. End lOOA NEXT LOW 36 200A xx 123E

NEXT
HIGH 12 200B "END" 00 123F

Note: Original Last Line NEXT LOW 00 1240
NEXT LOW /HIGH change from 0000 NEXT

HIGH 00 1241
to 2002. (AF.BO) New End 1242

Figure 1: "MAP" of Two New DATA Statements being Added

46 Runtime Utilities

10 REM ************************

DATA STATEMENT
GENERATOR

VIRGINIA LEE BRADY

DATA-GEN

*
*
*
*
*
*
*

12 REM *
14 REM *
16 REM *
18 REM *
20 REM *
22 REM *
24 REM *
26 REM * COPYRIGHT (C) 1981 *

* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *

28 REM
30 REM
32 REM
34 REM * *
36 REM ************************
38 REM
50 HOME
60 LOMEM: 4000
70 LINE = 2000
80 GOTO 1000
90 REM CALCULATE HI/LOW BYTES
100 HI= INT (NUMBER/ 256):LO = (NUMBER / 256 - HI) * 256: RETURN
1000 REM INPUT SUBSTRINGS
1010 PSN = PEEK (175) + PEEK (176) * 256
1015 INPUT "INPUT THE COLOR ";F$(1)
1016 INPUT "INPUT THE PATTERN ";F$(2)
1017 INPUT "INPUT THE YARDS IN DECIMAL ";F$(3)
1018 INPUT "INPUT THE FABRIC TYPE "; F$(4)
1020 REM ALLOW CHANGES
1035 FOR I = 1 TO 4: PRINT I; TAB(
1040 INPUT "ANY CHANGES ? ";Y$: IF
1045 INPUT "WHICH ONE? ";W: PRINT

: GOTO 1035

5) F$ (I) : NEXT
LEFT$ (Y$,l) "N" THEN 1050

"CHANGE PART ";W;" TO ";: INPUT F$ (W)

1050 F$ = "": FOR I = 1 TO 3:F$ = F$ + F$(I) + ",": NEXT :F$ = F$ + F$(I)

1055
1060
1065

LINE = LINE +
POKE PSN,LO:
FOR I = 1 TO

I

5:NUMBER = LINE: GOSUB 100
POKE PSN + l,HI: POKE PSN + 2,131

LEN (F$): POKE PSN +I+ 2, ASC (MID$ (F$,I,I)): NEXT

1070 POKE PSN + I + 2,0:NUMBER = PSN + I + 3: GOSUB 100
1075 POKE PSN - 2,LO: POKE PSN - l,HI
1080 INPUT "ADD MORE? ";Y$: IF LEFT$ (Y$,l) = "Y" THEN PSN =NUMBER+

2: GOTO 1015
1085 POKE NUMBER,0: POKE NUMBER + l,O:NUMBER =NUMBER + 2: GOSUB 100: POKE

175,LO: POKE 176,HI
1090 END

An EDIT Mask Routine
in Applesoft BASIC

by Lee Reynolds

47

This article describes some techniques for producing
formatted output using edit masks. The programs
permit you to produce professional looking output,
using a "mask" very similar to those used in many high
level business oriented languages.

My work as a professional programmer in business applications has often called
for the use of ''edit masks'', in such languages as COBOL, DIBOL, and the Com­
mercial Subroutine Package of Data General FORTRAN. I have found the edit
mask capability in these languages quite useful, so I decided to write a routine in
Applesoft BASIC that I could use at home on my Apple II.

The Edit Mask

I should begin by first giving a brief explanation of what an edit mask is, for
those readers who have never encountered the term before. An edit mask might be
defined as a string of characters which specify operations on a number so as to pro­
duce an output string that contains the number's digits re-formatted for printing
in certain specific ways. Some of the most common operations that can be carried
out on any given number by means of edit masks are the following: (1) "suppress­
ing" of zeroes, by replacing them with blanks in the output string, (2) inserting of
a decimal point in a fixed position of the output string, (3) inserting of comma in
the string to express thousands, millions, etc., (4) placing a dollar sign before the
leftmost digit of the number string, and (5) appending a minus sign to the end of
the string if the input number is negative.

The edit mask is used as a sort of "picture" of what the output string should
be like after carrying out operations such as the above on the number to be edited.
To achieve this, there are definite rules for the edit routine's interpretation of the
characters that make up the mask. Perhaps the best way of explaining this is to
give some examples of my routine's use.

48 Runtime Utilities

The Edit Mask Program

The routine itself on the following listing is contained between line numbers
100 to 580. The statements preceding 100 are a "driver" routine you can use to in­
put your edit mask and number to be edited in order to experiment with various
types of editing.

The editing routine is called by a GOSUB 100. There are two arguments that
must be passed to it: NUM is the number to be edited, and MASK$ is the edit
mask string. NUM can contain any number of digits up to 9. I have made no provi­
sion for editing numbers that must be expressed in "scientific notation" with an
Exponent field.

The result of the masking will be passed back to the calling program in the
string OUT$, whose length is the same as MASK$.

There are six special characters which can appear in MASK$ that are treated
in a distinctive way: these are the digit 9, the digit 0, the period, the comma, the
minus sign, and the dollar sign. The mask can contain other characters also, but
more about this later.

Explanation of Mask Characters

The digit 9 is the "numeric replacement" character. This means, wherever a
9 is present in the mask, it will be replaced in the result field (OUT$) by the cor­
responding digit of NUM, if any, in that position.

Thus, suppose we define MASK$ = ''99999' ', and assume the number to be
edited is NUM = 352. Then the result, after calling the edit routine, will be
OUT$ = " 352". (Note the two blanks preceding the ASCII digit 3. This is
because the length of the mask exceeds the length of the number to edit by two.)

Next, the digit 0 is the "zero-suppress" character. This means wherever a 0
appears in the mask, it will be replaced in the result field by the corresponding
digit of NUM only if that digit is not a zero; if the digit is a zero, then the cor­
responding position in the result field will be a blank.

To give an example, suppose MASK$ = "990990" and the number to be
edited is NUM = 120563. Then the result will be OUT$ = "12 563". The zero in
NUM was suppressed.

The most common usage of the zero-suppress character in a mask is to sup­
press leading zeroes of a number. Thus a mask of "00099" would suppress the
first three digits of any five-digit number if they were zeroes, but would print
them if they were not. Due to the way my routine operates, it turns out that
leading zeroes are always suppressed, anyway. If you would rather change this
feature of the routine, I will describe later how you could go about doing so.

The period in a mask is usually used as the decimal point position. It is what
is called an "insertion character" in the mask because it is always inserted in the
result field exactly in its corresponding position in the mask.

Reynolds Edit Mask 49

Let's consider some examples of masks containing a period, and what the
result will be. Suppose our mask is "999.99" and our number to be edited is
312.44; then, as you would expect, the result will be OUT$ = "312.44" . Next
suppose we use the same mask but NUM = 33.6. The result is OUT$ = "33.60" .
There is a blank in position one and a zero in the last position. (If the last character
of the mask had been a 0 instead of a 9, then the last character in the result would
have been a blank.) Now, let's suppose that NUM = 124.556. In this case there is
one more digit to the right of the decimal point in the number to edit than there is
in the decimal part of the mask. When this, or something similar happens, my
routine will truncate the extra digit(s), and replace it (them) by an asterisk to
signal field overflow. The result then is OUT$ = "124.5*".

My routine follows a similar rule in case the number of digits to the left of the
decimal point in NUM exceeds the number allowed in MASK$. For example, if
NUM = 1256.7, then the result will be OUT$ = "*56.70".

By the way, since it is conceivable that you might, either by mistake or by
design, include two or more periods in your mask, the routine will treat only the
rightmost period in the mask as the decimal point position. All other periods will
be treated as insertion characters, and will appear in the corresponding positions
of the result field as expected.

Next, let's consider the comma in an edit mask. An example of a mask con­
taining two commas is the following: MASK$ = "99,999,999". If your number to
edit contains either 7 or 8 digits, then the result field will contain both commas in
the appropriate places, as you would expect. However, with 6 or fewer digits in
NUM, either the first or both commas will be suppressed and replaced by blanks.
Examples: if NUM = 1234567, the OUT$ = " 1,234,567"; and if NUM = 1234,
then OUT$ = " 1,234" (note the five blank characters preceding the
digit 1); and lastly, if NUM = 123, then there will appear seven blanks preceding
the digit 1: OUT$ = " 123".

Thus we see that the comma is a special sort of insertion character which is
suppressed if there are no preceding digits of the number to be edited.

Now consider the dollar sign used as an edit mask character. I have defined
this character's usage in a special way. If the dollar sign is the very first character
in the mask, then it is treated as a "floating dollar sign". That means that the
dollar sign in the result field will "float" to the right, far enough to immediately
precede the leftmost digit of NUM. Some examples: if MASK$ = "$99,999.99"
and NUM = 11.45, then the result of editing is OUT$ = " $11.45" (note
that there are four blanks preceding the dollar sign in the result field) . And if NUM
= 2321, then we have this result: OUT$ " $2,321.00" (one blank preceding
the dollar sign) .

Please note that I have defined this usage of the dollar sign as a "floating"
dollar sign only when it is the first character in the mask. If it occurs elsewhere in
the mask, then it becomes an insertion character.

50 Runtime Utilities

The last special usage character in a mask is the trailing minus sign. If the
mask contains a minus sign as the very last character, then the rightmost position
of the result field will be a minus sign when t:Q.e number to edit is negative, or will
be blank if the number is positive. Examples: if MASK$ = "99,999.99-" and
NUM = -1453.62, then the resultant OUT$ = " 1,453,62- ".While if NUM =
2246.7, then we have OUT$ = 11 2,246.70".

If a minus sign appears in a mask in any other position, it is treated as an in­
sertion character. Thus, for example, you could format a date, MMDDYY =

month, day, and year with the following mask: MASK$ = "09-99-99". If NUM =
101479, then OUT$ = 11 10-14-7911 •

You might be wondering what will happen if you edit a negative number
using a mask which does not contain a trailing minus sign. It depends upon
whether you have allotted enough digit positions in the mask to accommodate a
leading minus sign. If you have then the minus sign will take the place of the first
position containing a nine, zero, or comma that immediately precedes the left­
most digit of NUM. If you have not allotted enough digit positions in the mask,
then my routine will print the asterisk signaling field overflow.

Now, any character other than the six special cases discussed above may also
appear in a mask. In that case the character becomes an insertion character.
Suppose you define

MASK$= "$BAL. DUE AS OF SEP/'78: 99,999.99"

If NUM = 1324.57, then the result of masking will be:

OUT$= "BAL. DUE AS OF SEP/'78: $1,324.57"

From the above example, you can see that you are only restricted in using edit
masks by your imagination, perhaps after making modifications to my routine.
For example, you will note that the year in the above mask is '78 not '79. It could
not be '79 because the 9 is a numeric replacement character and in this case would
have been blanked out. However, if you change the numeric replacement char­
acter to some other more convenient character (perhaps an ampersand?) then this
difficulty could be avoided.

As already mentioned, another modification you might wish to make is to
allow outputting of leading zeroes in a numeric field if the corresponding edit
characters are 9's. To do this, you need to make three changes to the routine.

455 IF 1-1
500 IF N$
525 IF N$

=II AND MID$ (MASK$,l-1,1)= "9" then 480
" " THEN N$ = "O"
""THEN 460

When you incorporate this routine into your own programs, you may wish to
change the names of some of the local variables used by it in order not to conflict
with your own use of the same names. Here is a list of all variables used by my
routine.

Variables

MASK$
NUM
NUM$
LM
LN
PM
PN
RM
RN
QM
ON
FD%
MF%
NF%
M$
N$
I
J
II
12

Reynolds

the string containing the edit mask.
the input number to edit
NUM converted to a string
length of MASK$
length of NUM$

Edit Mask 51

position of rightmost decimal point in MASK$ (or zero if none)
position of decimal point in NUM$ (zero if none)
number of digit positions right of decimal point in MASK$
number of digits right of decimal point in NUM$
number of digit positions left of decimal point in MASK$
number of digits left of decimal point in NUM$
flag telling whether mask has floating dollar sign (1 if yes, 0 if no)
flag telling whether mask has trailing minus sign (1 if yes, O if no)
flag telling whether NUM is negative (1) or positive (0)
current character of MASK$ being processed
current character of NUM$ being processed
loop variable and temporary variable
pointer to current digit in NUM$
first position in MASK$ to process
last position in MASK$ to process

One final note: in using the driver routine to experiment with various edit
masks, you should remember that if your mask will contain commas or colons,
then you must enclose the entire mask by quotation marks, or else Applesoft will
drop part of your mask when it executes the INPUT statement.

Notes on Converting to Other BASICs

I am not familiar with any other BASICs for microcomputers. I do, however,
have some acquaintance with the BASIC languages for two minicomputers-the
DEC PDP-ll and the Data General Nova 3. With this as background, I have com­
piled the following list of possible modifications you might have to make to my
routine to get it to work on 6502 machines other than the Apple.

1) Applesoft allows variables to have names with more than two characters,
although only the first two are used to distinguish between different names. If
your BASIC does not allow this, you will have to change some of the names that
my routine uses.

2) Some BASICs don't allow multiple statements per line, or if they do, the state­
ment separator might not be the colon; two common alternatives are the back
slash or the exclamation point.

3) If your BASIC does not have the "ON ... GO TO" statement, then line number
85 will have to be replaced with something else, perhaps a couple of "IF ... THEN
GOTO ... " statements.

52 Runtime Utilities

4) Not all BASICs allow "NEXT" statements which do not specify the loop
variable to end "FOR" loops. There are several lines in my program that may
necessitate this type of change: 160, 190, 240, 280, 340, and 550. In all of these
cases the implied FOR loop variable is "I".

5) You may have to DIMension your strings in your BASIC program, as is true in
Apple's Integer BASIC, but not Applesoft.

6) String concatenation in Applesoft is accomplished with string expressions
joined by means of the plus (+) sign; your BASIC may use the ampersand (&.) .

7) In comparing strings, Applesoft uses the combination of less than and greater
than signs(< >);perhaps, as in Integer BASIC on the Apple, you are only allowed
to test inequality with the number sign (#).

8) Please note that I have several statements in my program of the following
general form: IF X THEN ... This is "shorthand" for the equivalent IF X < > 0
THEN ... I also have a number of statements like the following: IF ... THEN 100
(where 100 can be any statement number). This is a "shorthand" for IF ... THEN
GOTO 100. I don't know whether all BASICs allow the abbreviated forms that I
use.

9) I have made use of the following string functions: STR$, LEFT$, RIGHT$,
MID$, and LEN. Your BASIC might call these by different names, or have dif­
ierent syntax rules about their arguments. Here are the Applesoft syntactic defini­
tions for these functions, which you should keep in mind if you have to convert to
different usages on your computer:

STR$(X)
converts the number X to a string

LEFT$(A$,N)
returns the leftmost N characters of string A$

RIGHT$(A$,N)
returns the rightmost N characters of string A$

MID$(A$,M,N)
returns the N consecutive characters of string A$, starting at position M

LEN(A$)
returns the number of characters in string A$

10 REM ************************
11 REM * *
12 REM * EDIT MASK *
14 REM * LEE REYNOLDS *
15 REM * *
16 REM * EDIT MASK *
l 7 REM * *
18 REM * COPYRIGHT (CJ 1981 *
20 REM * MICRO INK, INC. *
21 REM * CHELMSFORD, MA 01824 *
22 REM * ALL RIGHTS RESERVED *
23 REM * *
24 REM ************************

Reynolds Edit Mask

25 HOME : PRINT "EDIT MASK R8UTINE": PRINT : PRINT" THE EDIT MASK CAN
CONTAIN ANY INSER-": PRINT "TION CHARACTERS, PLUS FOLLOWING SPECIAL

30 PRINT" CHARACTERS:": PRINT" IF$ IS FIRST CHAR., IT IS TREATED AS"
: PRINT " A FLOATING DOLLAR SIGN"

40 PRINT • IF - IS LAST CHAR., IT WILL BE OUTPUT": PRINT "IF NUMBER TO
EDIT IS NEGATIVE, OR RE-": PRINT "PLACED BY BLANK IF POSITIVE"

50 PRINT" 9 CORRESPONDS TO A DIGIT TO PLACE IN": PRINT "THAT POSITION
OF THE MASK": PRINT " 0 CORRESPONDS TO A NONZERO DIGIT TO"

60 PRINT "PLACE IN THAT POSITION. IF YOU WANT A": PRINT "COMMA OR COLON
IN THE MASK, ENCLOSE THE"

65 PRINT " ENTIRE MASK IN QUOTES TO INPUT IT.": PRINT
70 INPUT "EDIT MASK? ";MASK$
75 INPUT "NUMBER TO EDIT?";NUM: GOSUB 100: PRINT "EDITED NUMBER:";OUT$
80 PRINT : INPUT "l=NEW NUMBER, 2=NEW MASK AND NUMBER?";N
85 ON N GOTO 75,70
90 GOTO 80
100 NUM$ = STR$ (NUM) :LN = LEN (NUM$) :LM = LEN (MASK$) :QM = O:QN = O:R

M = O:RN = O:PN = O:PM = O:NF% = O:MF% O:FD% = O:DF% = 0
110 OUT$= "": IF NUM < 0 THEN NF%= 1: REM SET FLAG TELLING WHETHER INPU

T NUMBER ISNEGATIVE
120 IF RIGHT$ (MASK$,l) = "-" THEN MF%= l: REM SET FLAG TELLING WHETH

ER INPUT MASK HAS TRAILING MINUS SIGN
130 IF LEFT$ (MASK$,l) = "$" THEN FD% ~ l: REM SET FLAG TELLING WHETHE

R INPUT MASK HAS FLOATING DOLLAR SIGN
140 FOR I = l TO LM: REM FIND POSITION OFDECIMAL POINT IN MASK
150 IF MID$ (MASK$,I,l) = "." THEN PM= I
160 NEXT : IF FD% = 0 THEN DF% = l: REM IF NO FLOATING DOLLAR SIGN IN M

ASK, SET FLAG SAYING "$" ALREADY OUTPUT TO EDITED FIELD
170 FOR I = l TO LN: REM FIND POSITION OF DECIMAL POINT IN NUMBER TO ED

IT
180 IF MID$ (NUM$,I,l) = "." THEN PN =
190 NEXT
200 IF PN THEN RN = LN - PN: REM IF DECIMAL POINT IN NUMBER, COMPUTE #

DIGITS RIGHT OF DECIMAL POINT
210 IF PM = 0 THEN 250: REM IF DECIMAL PT. IN MASK, FIND # DIGIT POSIT!

ONS RIGHT OF IT
220 FOR I = LM TO PM STEP - l
230 IF MID$ (MASK$,I,l) = "O" OR MID$ (MASK$,I,l) "9" THEN RM RM +

1
240 NEXT
250 IF PN 0 AND PM = 0 THEN 300
260 IF RM RN THEN 300
270 IF RM < RN THEN 290
280 FOR I RN TO RM - l:NUM$ = NUM$ + "O": NEXT : GOTO 300: REM ZERO-F

ILL RIGHTMOST DECIMAL POSITIONS OF NUM$
290 I = LN - RN + RM - l:NUM$ = LEFT$ (NUM$,I) + "*": REM TRUNCATE NUM$

TO MATCH MASK, PUT "*" IN RIGHTMOST DIGIT
3u0 QN = LEN (NUM$) - RM: IF PN THEN QN = QN - l: REM GET DIGITS LEFT

OF DEC. PT. IN NUMBER, IGNORING DEC. PT. IF ANY
310 IF NF% AND MF% THEN QN = QN - 1: REM IGNORE MINUS SIGN IN NUMBER I

F TRAILING MINUS IN MASK
320 FOR I = l TO LM: IF I = PM THEN 350: REM FIND f DIGITS IN MASK LEFT

OF DEC. PO INT
330 IF MID$ (MASK$,I,l) = "O" OR MID$ (MASK$,I,l) = "9" THEN QM= QM+

l
340 NEXT
350 IF QM > = QN THEN 370: REM TRUNCATE NUMBER ON LEFT, MAKING LEFTMOS

T DIGIT "*"
360 I = LEN (NUM$) - QN + QM - l: IF NF% AND MF% THEN I = I - 1: REM DR

OP MINUS SIGN ALSO IF IGNORED BEFORE
365 NUM$ = "*" + RIGHT$ (NUM$,I):QN =QM

53

54 Runtime Utilities

370 Il l: IF FD% THEN Il = 2: REM WILL IGNORE ANY FLOATING DOLLAR SIGN

380 I2 LM: IF MF% THEN I2 = LM - 1: REM WILL IGNORE ANY TRAILING MINUS
IN MASK

385

389
390

400

410

420
430
440
450
460

470
480
490
500

510
520
530
540
550

555

560

IF NF% AND MF% AND LEFT$ (NUM$,l) = "-" THEN QN = QN + 1: REM IF N
UMBER'S MINUS SIGN WAS IGNORED BEFORE, PUT IT BACK IN

DUM$ = ••: IF QN THEN DUM$ LEFT$ (NUM$,QN)
IF PN THEN NUM$ = DUM$ + RIGHT$ (NUM$,RM): REM DROP DECIMAL POINT
FROM FROM NUMBER STRING
IF NF% AND MF% AND LEFT$ (NUM$,l) = •-• THEN
(NUM$) - 1): REM DROP MINUS SIGN IF TRAILING

J = LEN (NUM$): FOR I = I2 TO Il STEP - l:M$
= • ": IF J > 0 THEN N$ = MID$ (NUM$,J,l)

IF M$ < > "," THEN 490
IF N$ < > "-" THEN 450

OUT$ = N$ + OUT$:J = J - 1: GOTO 550
IF N$ < > " • THEN 480

NUM$ = RIGHT$ (NUM$, LEN
MINUS IN MASK

MID$ (MASK$,I,l) :N$

IF DF% THEN 440: REM IF FLOATING DOLLAR SIGN ALREADY OUTPUT, GO INS
ERT BLANK

DF% = !:OUT$ = "$" + OUT$: GOTO 550
OUT$ = M$ + OUT$: GOTO 550

IF M$ < > "9" THEN 520
IF N$ = " " THEN 460: REM IF ALL DIGITS OF NUMBER OUTPUT, GO OUTPUT

FLOATING DOLLAR SIGN OR BLANK
GOTO 440: REM GO OUTPUT THE DIGIT
IF M$ < > "O" THEN 480: REM GO OUTPUT CURRENT CHARACTER IN MASK
IF N$ < > "O" THEN 500: REM GO OUTPUT BLANK OR DIGIT

N$ = " ": GOTO 440: REM OUTPUT BLANK
NEXT : IF DF% = 0 THEN OUT$ = "$" + OUT$: REM IF FLOATING DOLLAR NO
T OUTPUT, APPEND IT ON LEFT
IF DF% AND FD% THEN OUT$ = • •
Y OUTPUT,PUT BLANK IN PLACE OF
IF MF% = 0 THEN RETURN REM

+ OUT$: REM IF DOLLAR SIGN IS ALREAD
MASK'S DOLLAR SIGN
ALL DONE IF NO TRAILING MINUS IN MASK

570 N$ = " ": IF NF% THEN N$
NEGATIVE

"-": REM BLANK IF POSITIVE, MINUS SIGN IF

580 OUT$ = OUT$ + N$: RETURN

Business Dollars and Sense
in Applesoft

by Barton M. Bauers, Jr.

55

If you ever intend to do serious business programming
in BASIC, then the information and programs presented
here are invaluable. They show how to overcome the
inherent rounding and formatting problems of BASIC in
dealing with dollar and cents type of data.

If you purchased an Apple II Plus for business applications, that is applications
which require the use of financial tables and calculations, then you may have
encountered a rounding problem in executing your programs. Perhaps you have
failed to recognize this problem, and are running programs which contain
erroneous mathematical calculations! The purpose of this article is to acquaint
you with the potential for rounding errors, and to suggest several possible solu­
tions, depending on your needs. In addition, the process of creating text files, with
some simple examples, will be addressed, since you will probably wish to use the
subroutines discussed later in many programs which you write.

To start, let's demonstrate the problem. Try the following program:

PRINT 100.09 + 200.00 + .80 (rtn)

(Note that where (rtn) is indicated, it means to press the key marked RETURN.)

Your Apple should display:

300.89

Now type this program:

PRINT 300.89 - 100.09 - 200.00 - .80 (rtn)

The answer (which you' ll agree should be zero) will appear as:

1.19907782E-08

This small error occurs because not all numbers between zero and one can be

56 Runtime Utilities

exactly represented in binary arithemetic. Oddly enough, for most scientific
work, such an error is insignificant, and will not affect the outcome of any pro­
grams. It is unlikely, however, that any usable system can be implemented in a
business or financial situation unless absolute accuracy is obtained in recording
and tabulating monetary amounts. When you program such an applica­
tion-whether it be the family checkbook, or a complicated inventory control
system-the ability to balance to the penny is a must!

There is, fortunately, a straightforward answer to the problem. While it is
easy to discuss, it requires a bit of trickery to implement. If all values are carried
within the computer as whole (integer) numbers, then there is no possibility of
having rounding errors. The sacrifice you make, of course, is the necessity of per­
forming all internal mathematical calculations in whole numbers, which requires
that you, the programmer, remember where the decimal point belongs. Basically,
therefore, by multiplying each monetary value by 100, and taking th~ INTeger
value of the resultant figure, the problem is solved. This opens up additional prob­
lems, as we shall see.

Type in the following program:

10 DEF FN VL(X) = INT(X* 100)
20 INPUT "ENTER NUMBER:"; K
30 K = FN VL(K)
40 PRINT "NUMBER IS NOW: ";K
50 GOTO 20
RUN

Try some of the following examples:

1.00 (rtn)

The computer will respond with

100

Now try this one:

-2.99 (rtn)

The Apple answers with

-300

OOPS! Try this one now:

300.89

Your answer:

30088

Bauers Business Dollars 57

Clearly, the use of integer values does not in itself solve the problem. The
same rounding error which plagued the initial examples is contained in the integer
value. The library function INT supplies the " .. .largest integer less than or equal
to the given argument ... " (quoted from the Applesoft II manual) . In the negative
direction, the rounding error will cause the integer value to one number smaller
(further negative) than the argument whenever there is a rounding error: in the
positive direction the integer is similarly smaller when the computer
underrounds.

Referring back to the example used at the beginning of this article, it is easy to
see that the value of the rounding error is extremely small-something like
.00000001. Using the integer approach to eliminate the rounding problems, then,
requires consideration for this small error. We are not concerned with values
smaller than the second decimal place (pennies) in about 98% of business applica­
tions, therefore it is possible to add enough "cushion" to the integer conversion
routine such that the small error which creeps in will never cause the Applesoft
command INT to fall short during conversion.

To illustrate this process, type CTRL C (rtn) and rekey line 10 as follows;

10 DEF FN VL(X) = INT((X + .0001) * 100)
RUN (rtn)

Now try entering the previous examples.

Number Entered
1.00
·2.99
300.89

Value Returned
100
·299
30089

This function works for both positive and negative numbers, because the 'ad­
der' of .0001 is enough to offset any internal underrounding, both in a positive and
a negative direction. Therefore, in any problem involving money calculations,
you should add the following to your program:

15 DEF FN VL(X) = INT ((X + .0001) * 100)

aaa INPUT "ENTER AMOUNT";C
bbb C = FN VL(C}

Line 15 defines the function.

Line aaa requires keyboard entry of an amount which will be stored as
variable C internally (you will naturally use whatever variable name you need
here).

58 Runtime Utilities

Line bbb converts C to an integer value, using the previously defined func­
tion, and 'pads' the value read in before conversion, to prevent underrounding.

Remember-all internal mathematics must now be performed with whole
numbers.

A natural question at this point would be, ''How do I print out the figures so
that they once again leok like dollars and cents?" This is part two of our story.

It would seem that by multiplying the integer number previously established
by 01, we would again reduce the integer to a decimal number similarto the one
originally typed in. Try it!

Type the following:

PRINT 30089* .01 (rtn)

Your answer:

300.89

Try some additional values.

Value
-299
-100
180

Value• .01
-2.99
-1
1.8

Again, the result is unacceptable for business applications. Again, it is clear
that Applesoft BASIC, which handles scientific applications so well, is not equip­
ped to yield usable formatting in dollars and cents. The author in fact, has seen
commercial software which ignores this problem, and gives answers with the
same errors demonstrated throughout the article. While some programmers might
not consider the rounding problem serious, how can a businessman issue a check
for $1.8?

The answer to the problem of restoring two decimal places to the internally
generated integer values is a program which is named subroutine MASK. This pro­
gram should be typed and SAVED, converted to a textfile, and EXEC'd into every
business application where accurate dollars and cents calculations are required.
Listing 1 shows the program steps for MASK. Type it and save it under the name
DOLLAR MASK (it is assumed that you have at least one disk drive) . After it is
SA VEd, you are ready to make a textfile out of DOLLAR MASK. To do this, if you
have not already created a utility program for making textfiles, there is another
short program which must be typed, SA VEd, and made into a textfile. Prior to that
exercise, however, let's look at the contents of the program MASK.

Line 50 is the value conversion function described earlier·

Bauers Business Dollars 59

Line 15010 establishes the number of digits in the variable.

Line 15030 takes the right two characters (cents) and puts them in string
variable XZ$. Note however that line 15060 puts a zero ahead of the value stored
in XZ$ if XZ$ contains only one digit. Line 15090 removes a minus sign if it
became embedded in XZ$, and replaces it with a zero, moving the minus sign to
the left of the decimal point in XX$.

Line 15040 branches depending on whether the input string ZZ$ has 1,2, or
3-9 digits.

Line 15100 puts all except the cents value (which is now stored in ZZ$) into
the 'dollars' area, XX$.

To test this program, load it from the disk, and add the following additional
lines:

60 INPUT "ENTER NUMBER: ";CA
70 CA = FN VL(CA)
80 ZZ$ = STR$(CA)
90 GOSUB 15000

100 CA$= XW$
110 PRINT" THE ANSWER IS: ";CA$
120 END

Now type RUN and try some values which might be representative of a
business application. Try some positive and negative values, so you can
demonstrate that DOLLAR MASK really works.

After you have become familiar with the logic, it is easy to add other
capabilities to the DOLLAR MASK. For example, if you want to remove the
floating dollar sign from the program, delete the first part of line 15020, and drop
XV$ from line 15110. Another example is shown in listing 3, a routine for adding
check protecting characters (*) to the left of the masked number. The asumption
in this subroutine is for a field of 30 digits, but you can easily increase or reduce it
at your leisure.

To put the finishing touches on your program, it will be necessary to convert
DOLLAR MASK into a textfile. Then, it can be added to any program you write by
typing EXEC MASK. If you are not comfortable with the EXEC portion of the
Apple DOS manual, then the program listed in listing 2 will do the job easily. To
use this program, follow these steps:

1. Type the program in listing 2 TWICE, once with line number 10, and once
with line number 63999. When typing it under line number 10, change the LIST
reference to LIST 63999.

2. Type RUN.

60 Runtime Utilities

3. The computer will ask NAME OF TEXTFILE - , to which you should
respond CREATE EXEC FILE (rtn). When the disk stops, you will have created a
textfile named CREATE EXEC FILE. LOCK it, since it will permit you to set up
standard subroutines as text files in the future.

Now you are ready to make DOLLAR MASK into a textfile. If you have
already typed it and SA VEd it to disk under the name DOLLAR MASK, LOAD it
into memory, and follow the steps below:

1. Type EXEC CREATE EXEC FILE

2. Type RUN 63999

3. Answer the inquiry with MASK (rtn)

4. You now haye subroutine MASK stored on disk for future use.

Below is a summary on how to get MASK into your future business programs:

1. When writing a program do not use line numbers 15 or 15000 to 15120.

2. Insert the disk with MASK on it and type EXEC MASK.

3. You now have the subroutine and the function in your program.

4. Each time your program requires a value from the keyboard, such as CA,
add the following line after you read the value in:

CA = FN VL(CA)

5. If you have occasion to output money data to the screen or to a printer, add
the lines:

ZZ$ = STR$(CA)
GOSUB 15000
CA$ =XW$
PRINT CA$

6. You now have a string variable CA$ to display the value previously stored
in CA as a whole number.

7. Remember - the argument to use before you GOSUB 15000 is ZZ$, and
the return argument is XW$.

63999 D$ = CHR$ (4): INPUT "NAME OF TEXTFILE IS - ";AA$: PRINT D$"0PEN •
;AA$: PRINT D$;"WRITE ";AA$: LIST 1,63998: PRINT D$;"CLOSE ";AA$: DEL
63999,63999

A940 $40

• * ,,
,,
"
*
*
*

BUSINESS DOLLARS
AND SENSE

BARTON BAUERS

DOLLAR MASK

*
*

*
*
*

* COPYRIGHT (CJ 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
• •

FN VL(XJ = INT ((X + .OOOlJ * lOOJ

REM
REM
REM

SUBROUTINE
ARGUMENT ID ZZ$
RESPONSE IS XW$

M% = LEN (ZZ$J
XV$ "$":XX$ = "":XY$ = •.•
XZ$ = RIGHT$ {ZZ$,2J

Bauers Business Dollars

10 REM
12 REM
14 REM
16 REM
18 REM
20 REM
22 REM
24 REM
26 REM
28 REM
30 REM
32 REM
34 REM
36 REM
38 REM
50 DEF
14999
15000
15001
15002
15005
15010
15020
15030
15040
15050
15060
15070
15080
15090
15100
15110
15120

ON M% GOTO 15060,15070,15100,15100,15100,15100,15100,15100,15100
PRINT "ERROR ON INPUT VALUE ": GOTO 15120

XZ$ = "O" + XZ$: GOTO 15110
IF LEFT$ {ZZ$,1J = "-" GOTO 15090
GOTO 15110

XZ$ "O" + RIGHT$ {XZ$,1J:XX$
XX$= LEFT$ (ZZ$, {M% - 2JJ
XW$ = XV$ + XX$ + XY$ + XZ$

RETURN

*************** *********
• •
•
•
* •
• •

BUSINESS DOLLARS
AND SENSE

BARTON BAUERS

CHECK PROTECT

•

•
*

COPYRIGHT (CJ 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *

ALL RIGHTS RESERVED *

•

* • •

._ .. :

FN VL(XJ = INT { {X + .OOOlJ * 100)

REM
REM

ARGUMENT IS ZZ$
RESPONSE IS XW$

IF LEFT$ {ZZ$,1J = "-" GOTO 15560
M% = LEN (ZZ$J
XV$ = "$":XY$ = •.•
XZ$ = RIGHT$ {ZZ$,2J

GOTO 15110

•

10 REM
12 REM
14 REM
16 REM
18 REM
20 REM
22 REM
24 REM
26 REM
28 REM
30 REM
32 REM
34 REM
36 REM
38 REM
50 DEF
15000
15500
15505
15507
15510
15520
15530
15540
15550
15560
15570
15580
15590
15600
15610
15620
15630
15640
15650
15660

ON M% GOTO 15570,15600,15580,15580,15580,15580,15580,15580,15580
PRINT "ERROR ON INPUT VALUE" : XW$ = "": GOTO 15660

XZ$ = "O" + XZ$: GOTO 15600
XX$= LEFT$ {ZZ$, {M% - 2JJ

GOTO 15620
XW$ = XV$ + XY$ + XZ$

GOTO 15630
XW$ XV$ + XX$ + XY$ + XZ$
XT$ "************************•:s 30 - LEN {XW$)
XS$ RIGHT$ {XT$,BJ
XW$ XS$ + XW$

RETURN

61

62 Runtime Utilities

Lower Case and Punctuation
in Applesoft

by fames D. Childress

Getting lower case letters and punctuation into an
Applesoft string can be a real problem ... which is
unfortunate, since many programs could benefit from
that capability. The following article addresses that
problem and the two accompanying programs provide a
no-cost method to solve the problem!

While computer people may adapt to all caps, the general public still uses, and
apparently likes, lower case. Printing with lower case is more familiar, more
readable and more acceptable. Thus, we who work with computers should provide
lower case in any printout that we expect or hope laymen to read. After all, com­
puters should adapt to people; people should not have to adapt to computers.

Also, who among us hasn't wondered at how the Apple handles punctuations
in strings? In INPUTs, we have found to our dismay that a "JONES, JOHN"
results in an error message saying "?EXTRA IGNORED" and later finding the
string variable as only "JONES" with nothing to tell us which Jones that may be.
What wouldn't we give to get quotation marks and commas in the places we
want?

So much for what should be or what we want. The Apple doesn't have lower
case and seems rather whimsical about punctuation. Well, face it; there were a
number of compromises made in the design of the Apple and Applesoft. Of course,
some of these deficiencies can be conquered by money. We can buy one of the
lower case boards and live more or less happily ever after. Unfortunately, we do
not all or always have the option of buying a solution to a problem; most of us
have more problems than money. And there are not always solutions for sale.

An alternative approach is an Applesoft program to produce the desired lower
case and punctuation. I have looked for such a program and I found two
possibilities (there likely are others but I am not acquainted with them) :

1. Val J. Golding in "Lower Case Routine for Integral Data Printer," Call-Apple,
v.2, p. 11 (April/May 1979) gave a program to POKE lower case characters into
strings in the string array memory space.

Childress Lower Case 63

2. Another program was published in Contact, v.l, p.5 (May 1978); this program
POKEs lower case into the beginning of program memory space.

Both of these are quite limited. Note: Both should work for punctuation problems
within the same limitations.

Neither of these enables you to enter lower case or problem punctuations con­
veniently into string variables, nor to print statement strings in an Applesoft pro­
gram as desired. The program in figure 1 does the job for string variables and the
one in figure 2 for strings irt print statements.

Use and Operation

The heart of these programs is the same as in the cited programs: use of the
GET command to sneak things around the interpreter. The GET command
handles input character-by-character so that each can be manipulated. (The iden­
tical GET routine is used for both programs-lines 63010 to 63120 in the first, and
lines 63140 to 63150 in the second. Only one typing needs be done, a hint not to
be ignored.)

The first program is intended for use as a subroutine. For example, a state­
ment such as

30 INPUT "ACCOUNT NAME";NAME$(1)

can be replaced directly by

30 PRINT "ACCOUNT NAME";: GOSU863000:NAME$(1)= 88$

In a run, the program would appear to behave normally except that there would be
no ?EXTRA IGNORED's and NAME(l) would look quite strange on the CRT
monitor (",/7%2#!3%" for "lower case") and as lower case only on the printer.

In both programs, capitals are entered in a manner similar to the operation of
MUSE's word processor program, Dr. Memory. A ctrl-A makes the next letter
only capital; an ctrl-C makes all the following letters capital until either a ctrl-S or
the end of the string. Unlike Dr. Memory, the control characters are not
displayed. Instead, the capitalized letters are shown in inverse video. I like this
way of doing things. If you would prefer the opposite video, just interchange the
words NORMAL and INVERSE in lines 63020-63040 and 63080 and add an
INVERSE to line 63000 in figure 1. You could do even more to tailor to your per­
sonal tastes; change the control characters, change the default operation from
lower case to capitals, etc. These custom fittings are left as an exercise.

Another feature common to both programs is the motion of the cursor. The
backspace works but that is all. And it will move the cursor back no further than
the initial position. However, therein lurks a minor nuisance; if you try to
backspace beyond that limit, the immediately preceeding character will be wiped
out or replaced by a white block. This is of no consequence; ignore it.

64 Runtime Utilities

Since the string variables subroutine runs as a part of your program, you have
to keep labels straight. This subroutine uses only AA$, AZ$, BB$, BB, BZ$, and
ZZ and has no FOR loops. Also note that only the usual limitation applies for the
length of strings.

In the use of the second program, you append it to the program in which you
want to put lower case. A RUN 63000 initiates things; you simply give the line
number in which lower case is wanted. The first string in that line is printed, ter­
minated by # # to indicate the length limit. The cursor below this line indicates
the place for the change. You can insert anything but We assume that a mixed
capital and lower case rendition of the line above is what you will want. In any
case, the length cannot be exceeded. If you go over the limit, the excess will be
ignored. If you put in less, the remainder will be filled with spaces. If you don't
want to change that particular string, simply hit RETURN.

After a RETURN, the next string in the same line will appear, ready to be
changed. When all the strings of that one line have been dealt with, you are asked
for the number of the next line.

As mentioned above, lower case is displayed by the Apple as keyboard sym­
bols other than letters. These print properly as lower case on a printer that prints
lower case. If you want to display, say, a table so that you can check data prior to
printing, you need to program the display table and the printout table separately.
For convenience in doing this, both programs provide an all-caps string BZ$ as
well as the corresponding string BB$ with lower case.

Program Design

The GET routine, essentially the whole of figure 1, has already been men­
tioned. The GET command is followed by a series of IF' s to implement the control
character, backspace and RETURN functions. These are straight-forward and self­
explanatory.

The second program, figure 2, consists of three parts. The first, lines
63020-63300, POKEs the new string into the program in the memory space.

Concluding Remarks

Although written for Applesoft, these programs can be adapted to other
BASIC's. The first presents no problems. However, the program memory space
search routine in the second will require modification for other computers. This
modification should not be too difficult to implement for other Microsoft
BASIC's.

62980
62981
62982
62983
62984
62985
62986
62990
62991
62992
62993
62994
62995
62996
62999
63000
63010

Figure 1

************************ REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM *

* *
* LOWER CASE INSERT *
* JAMES D. CHILDRESS *
* *
* LOWER CASE INSERT *
* * * COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *

*
REM ************************
REM
END

Childress Lower Case

HOME : VTAB (3): PRINT "LOWER CASE INSERTION PROGRl'M": PRINT :
LMAX = 62999: PRINT "NUMBER OF FIRST LINE TO BE RE-": INPUT "WRITTE

N ";LT: PRINT

65

63020 PRINT :M = 256 * PEEK (104) + PEEK (103) + 2
63030 LN = 256 * PEEK (M + 1) + PEEK (M): IF LN > LMAX OR LN > LT THEN

63320
63040 IF LN < > LT THEN M = 256 * PEEK (M - 1) + PEEK (M - 2) + 2: GOTO

63030
63050 K = O:LL = O:UL = 0
63060 FOR J = M + 2 TO M + 255:TST PEEK (J): IF TST 0 THEN M

3: GOTO 63030
63070 IF TST 58 THEN K
63080 IF TST 186 OR TST
63090 IF K 1 AND LL > 0
63100 IF K 1 AND LL = 0
63110 NEXT

0
= 132 THEN K = 1
AND TST = 34 THEN UL
AND TST = 34 THEN LL

63120 BB$ = "":BZ$ = "":BB= O:ZZ = 0

J - 1: GOTO 63120
J + 1

J +

63130 FOR I= LL TO UL: PRINT CHR$ (PEEK (I));: NEXT: PRINT "f#"
63140 GET AA$:AZ$ = AA$: IF ASC (AA$) = 13 THEN NORMAL : GOTO 63260
63150 IF ASC (AA$) 1 THEN ZZ = 1: INVERSE :BB = 0: GOTO 63140
63160 IF ASC (AA$) 3 THEN BB = 1: INVERSE : GOTO 63140
63170 IF ASC (AA$) 19 THEN BB = 0: NORMAL : GOTO 63140
63180 !F ZZ = 1 OR BB = l THEN ZZ = 0: GOTO 63210
63190 IF ASC (AA$) < 65 OR ASC (AA$) > 90 THEN 63210
63200 AA$ CHR$ (ASC (AA$) + 32)
63210 BZ$ = BZ$ +AZ$: PRINT AZ$;: IF BB= 0 THEN NORMAL
63220 BB$ = BB$ + AA$: IF ASC (BB$) = 8 AND ASC (AA$) 8 THEN PRINT "

";
63230 IF LEN (BB$) < = 2 AND ASC (AA$) 8 THEN BBS= "" : BZ$ = "": GOTO

63140:
63240 IF ASC (AA$)
63250 GOTO 63140

8 THEN BB$ LEFT$ (BB$, LEN (BB$) - 2)

63260 IF BB$ = "" THEN 63310
63270 PRINT : FOR I = LL TO UL
63280 DD$= MID$ (BB$,I - LL+ l,l):MM
63290 POKE I,MM
63300 NEXT
63310 UL = O:LL = 0: PRINT : GOTO 63110

ASC (DD$)

63320 PRINT : PRINT " NUMBER OF NEXT LINE TO BE REWRITTEN": INPUT "(ENTE
R 0 TO END PROGRAM ";LT

63330 IF LT = 0 THEN END
63340 GOTO 63020

66 Runtime Utilities

Figure 2

REM ************************
REM
REM
REM
REM
REM
REM
REM
REM
REM

•
•
•
• • •

LOWER CASE ENTRY
JAMES D. CHILDRESS

LOWER CASE ENTRY

•
•
•
•

* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED * REM

REM * •
REM ************************
REM

BB$= "":BZ$ = "":BB= O:ZZ = 0

62980
62981
62982
62983
62984
62985
62986
62990
62991
62992
62993
62994
62995
62996
63000
63010
63020
63030
63040
63050
63060
63070
63080
63090

GET AA$:AZ$ = AA$: IF ASC (AA$) = 13 THEN NORMAL : GOTO 63130
IF ASC (AA$) 1 THEN ZZ = 1: INVERSE :BB = 0: GOTO 63010
IF ASC (AA$) 3 THEN BB = 1: INVERSE : GOTO 63010
IF ASC (AA$) = 19 THEN BB = 0: NORMAL : GOTO 63010
IF ZZ = 1 OR BB = 1 THEN ZZ = 0: GOTO 63080
IF ASC (AA$) < 65 OR ASC (AA$) > 90 THEN 63080

AA$ CHR$ (ASC (AA$) + 32)
BZ$ = BZ$ +AZ$: PRINT AZ$;: IF BB= 0 THEN NORMAL
BB$ = BB$ + AA$: IF ASC (BB$) = 8 AND ASC (AA$) . ; 8 THEN PRINT "

63100 IF LEN (BB$) < = 2 AND ASC (AA$) 8 THEN BB$= "":BZ$ = ••: GOTO
63010

63110 IF ASC (AA$)
63120 GOTO 63010
63130 PRINT : RETURN
63140 END

8 THEN BB$ = LEFT$ (BB$, LEN (BB$) - 2)

4
GRAPHICS

67

Introduction 68

Graphing Rational Functions 69
Ron Carlson

A Hi-Res Graph Plotting Subroutine in Integer BASIC for the
Apple II 75

Richard Fam

How to Do a Shape Table Easily and Correctly 78
fohn Figueras

Define Hi-Res Characters for the Apple II 96
Robert F. Zant

Apple II High Resolution Graphics Memory Organization 99
Andrew H. Eliason

68

Introduction
The graphics capability of the Apple needs no introduction. It is undoubtedly one
of the most appreciated features of the computer. The articles and programs
appearing in this section build around this tremendous capability by making it
even easier to use and understand the Apple II hi-res graphics. The first two
articles address the plotting of functions. "Graphing Rational Functions" by Ron
Carlson presents a complete system in Applesoft for graphing any function at any
scale on the Apple's screen. Richard Fam' s ''Hi-Res Graph Plot'' provides another
method for plotting functions in Integer BASIC.

"How to Do a Shape Table" by John Figueras provides a foolproof system for
automatically generating shape tables. "Define Hi-Res Characters" by Robert
Zant presents a method for generating a character table for use with Apple's hi-res
character generator. And lastly, Andrew Eliason's "Hi-Res Memory
Organization" article gives insight into the graphics screen representation in
memory. Together, these articles and programs will help unlock the graphical
capabilities of anyone's Apple!

69

Graphing Rational Functions
by Ron Carlson

One of the more interesting and educational
applications for the Apple's high resolution graphics is
plotting functions. This general purpose plotting
routine-applied here to rational functions-can graph
any function over any scale and is easy enough to be
used by any student!

This is a general graphing program even though it is applied to graphing rational
functions, such as:

x(x- 4)(x + 3)
Y=-----

(x-1) (x+ 5)

If you want to graph any type of function, either remove the denominator
function, FN DEN(X), or merely DEF FN DEN (X) = l. Therefore you could graph
y=x(sin(x)) by the following lines:

60 DEF FN NUM(X)=X*SIN(X)
70 DEF FN DEN(X) = 1

This program has evolved from plotting x's on a printer to the versatile
graphics output of the Apple II. Even the program on the Apple II went through
changes, ranging from graphing with an origin in the center of the screen, graphing
any quadrant and choice of scale, to this version of choosing the location of the
origin on the screen and the scale. High school students appear to have no diffi­
culty using either of these options.

The program is broken into several parts: first the directions and functions
section explains to the user how to define the numerator and denominator func­
tions and how to use the program. Any legal BASIC expression can be used for the
definition of the numerator and denominator. Any non-rational function can be
graphed by DEF FN DEN(X) = l. I chose the definition method of inputting the
function to make the program more easily transferable to other versions of BASIC.

70 Graphics

Another section needed for the preparation is for arrangement of the scale and
determination of the location of the origin. I use the low-resolution screen with a
colored cursor in the center. The user can move the cursor up, down, left, or right
by using the following keys: U, D, L, R, and F when finished. The relative final
position of the cursor (A,B) is changed to represent the location of the origin on
the high-resolution grid of 280 x 192.

The main body of the program is the graphing section. In order to graph func­
tions, two problems had to be overcome. The first is that the upper left comer of
the screen is the origin, making it effectively upside down. The second is that I
wanted to have different origins for different applications.

Y'
(20,40)

Apple HI-Res
XY Coordinate

Plane

(200,90)

(240,150)

Sample conditions: Origin (200,90)
Scale = 10

Transformation formula: x' = (Hx - Ox)/scale
y' = (Oy - Hy)/scale

(0',0')

(Hx, Hy) = Apple Hi-Res coor.

X'

(4',-6)

(Ox, Oy) = Origin location in Hi-Res coor.

Sample points: (240, 150) - (x',y1
x' = (240 - 200)/10 = 4' (240, 150) - (4', - 6')
y' = (90-150)/10 = -6'

(20,40) - (x',y)
x' = (20 - 200)/10 = -18' (20,40) - (-18',5')
y' = (90- 40)/10 = 5'

(200,90) - (x',y)
x' = (200-200)/10 = O' (200,90) - (O',O')
y' = (90 - 90)110 = o·

Figure 1

Carlson Graphing Rational Functions 71

A mathematical transformation formula will change the HGR coordinates to
x and y or x and y to HGR coordinates.

(real x coor.) = (HGR x coor.) -(x coor. of origin)

X=H-A

(real y coor.) = (y coor. of origin)- (HGR y coor.) and Y = B - V.

When the scale factor, S, is considered, then the transformation formulas
look like:

X = (H-A)/S
V = 8 -Y*S

(0,0)

j~

(50,80)

(0',0')

(30,180) . I
(-1 ', -6')

(0,191)

(180,30) .
(6.5', 1.5')

(279,0)

X'
--

(250,80) .
(10', - 1')

(279,191)

Apple Hi·Res in bold
X'Y' coordinates in italic

Variables: Scale = 20
Origin: (50,60)

Sample points: (30, 180) - x' = (30 - 50)/20 = - 1' = (_ 1' _ 6')
y' = (60 - 180)/20 = -6' '

(50,60) - x' = (50 - 50)/20 = 0' = (0' O')
y' = (60 - 60)/20 = O' '

(250,80)- x' = (250-50)/20 = 10' = (10',-1')
y' = (60 - 80)/20 = - 1'

(180,30) - x' = (180 - 50)/20 = 6.5' = (6.5' 1.5')
y' = (60 - 30)/20 = 1.5' '

Figure 2

72 Graphics

To graph, start H, the HGR coordinate, at 0 and continue the loop until H is
279. Translate H to the real x coordinate and substitute X into the function.
Check for an asymptote, and solve for the real y-coordinate. The transformation
formula will give the HGR vertical coordinate, which can be checked to make sure
it is on the screen, and plot the point. When the graphing loop is finished, POKE
-16302,0 displays the bottom portion of the screen. The graph stays on the screen
until the user depresses any key, thus giving plenty of time to make any important
notes. The user is offered the choice of keeping the same function and changing
the position of the origin and changing the detail by means of the scale, or starting
over with a new function.

Figure 3

-"-··---·---

Sample run using: x(x+3Xx-4)
Y=---- -

(x + 1) (x -1) (x + 5)

Scale= 12

10
11
12
14
16
18
20
21
22
23
24
25
26
27
50
60
70
75
80
85
90

100

110
120
130
140
150

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

330
340
350
370
380
390
400
410
420
440
450

460
470
480
490
500
510
520
530
540
550
560

570
580

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

DEF
DEF

* *
* GRAPHING RATIONAL *
* FUNCTIONS *
* RON CARLSON *
* *
* FUNCTION GRAPH *
* *
* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
* *

FN NUM(X) = X
FN DEN(X) = (X + 2)

Carlson Graphing Rational Functions

REM DEF FN DEN(X)=l>> IF YOU HAVE A NON-RATIONAL GRAPH

HOME INPUT "THERE ARE 280 HORIZANTAL DOTS. HOW MANY DOTS/UNIT DO YO
U WANT?";S
VTAB 21: PRINT "INDICATE THE INTENDED LOCATION OF THE ORIGIN BY MOVI
NG THE CURSOR WITH THE L R U D KEYS. F=FINISHED"
REM THIS ALLOWS THE USER TO SELECT WHICH AREA OF THE GRAPH TO VIEW
GOSUB 620: REM TO POSITION THE ORIGIN
REM S WILL BE THE SCALE
REM DETAIL INCREASES AS S INCREASES
VTAB 21: PRINT "AFTER THE BOTTOM HALF OF THE GRAPH IS FINISHED, HIT
ANY KEY"
PRINT "THERE IS A HASH MARK (/) ON THE AXIS FOR EACH UNIT"
HGR : HCOLOR= 7
REM AXIS, WITH THE REAL AXIS AT (A,B)
HPLOT O,B TO 279,B: HPLOT A,0 TO A,191
REM HASH MARKS EVERY UNIT ON THE AXIS
FOR H A TO 279 STEP S: HPLOT H,B - 2 TO H,B + 2: NEXT
FOR H A TO 0 STEP - S: HPLOT H,B - 2 TO H,B + 2: NEXT
FOR V B TO 191 STEP S: HPLOT A - 2,V TO A + 2,V: NEXT
FOR V B TO 0 STEP - S: HPLOT A - 2,V TO A + 2,V: NEXT
REM ACTUAL GRAPHING
FOR H = 0 TO 279
REM TRANSFER THE HGR COOR TO THE REAL VALUE

X = (H - A) / S:D = FN DEN(X)
REM DRAW THE VERTICAL ASYMPTOTES IF NECESSARY
IF D = 0 THEN HCOLOR= 3: HPLOT H,O TO H,191: HCOLOR= 7: GOTO 350

Y = FN NUM(X) / D:V = B - Y * S
REM TRANSFORM THE REAL Y VALUE TO HGR AND SEE IF IT STILL ON THE SC
REEN
IF V > 191 OR V < 0 THEN 350
HPLOT H,V
NEXT H
REM THIS POKE WILL DISPLAY THE BOTTOM QUARTER OF THE GRAPH
POKE - 16302,0: GET A$
TEXT : HOME
INPUT "DO YOU WANT TO SHIFT THE ORIGIN AND CHANGE SCALE?";A$
IF A$ = "Y" OR A$ = "YES" THEN 90
GOTO 830
HOME : PRINT " DIRECTIONS FOR RATIONAL FUNCTIONS"
PRINT " YOU MUST DEFINE YOUR FUNCTION IN TERMS OF NUMERATOR AND DENO
MINATOR"
PRINT " FOR EXAMPLE IF YOU WISH TO GRAPH THE FOLLOWING:"
PRINT" (X-l)(X+2)"
PRINT " Y = ----------
PRINT " X(X-7)"
PRINT PRINT " YOU WOULD TYPE THE FOLLOWING"
PRINT "60 DEF FNNUM(X)=(X-l)*(X+2)"
PRINT "70 DEF FNDEN(X)=X*(X-7)
PRINT "RUN"
PRINT : FLASH : PRINT "REMEMBER : "
PRINT "60 DEF FNNUM(X)=";: NORMAL : PRINT "LEGAL BASIC EXPRESSION"
FLASH : PRINT "70 DEF FNDEN(X)=";: NORMAL: PRINT "LEGAL BASIC EXPRE
SS ION"
PRINT "RUN"
GOTO 830

73

74 Graphics

600 REM POSITIONING THE ORIGIN OF THE SCREEN (40,40)
610 REM USING L R U D AND F
620 GR : COLOR= 3: PLOT 20,20:A = 20:8 = 20
630 GET A$
640 Al = A:Bl = B
650 IF A$ •u• THEN B B - 1: GOTO 710
660 IF A$ "D" THEN B B + 1: GOTO 710
670 IF A$ = "L" THEN A A - 1: GOTO 710
680 IF A$ = "R" THEN A A + 1: GOTO 710
690 IF A$ = "F" THEN 800
700 REM KEEP ON THE LO RES SCREEN
710 IF B < 1 THEN B = 1
720 IF B > 39 THEN B = 39
730 IF A < 1 THEN A = 1
740 IF A > 39 THEN A = 39
750 REM BLANK OLD POSITION
760 COLOR= 0: PLOT Al,Bl: COLOR= 3
770 REM PLOT NEW POSITION
780 PLOT A,B
790 GOTO 630
800 A = 7 * A:B = B * 192 I 40
810 REM CHANGE SCALE TO REFLECT HGR (280 BY 192)
820 TEXT : HOME : RETURN
830 END

A Hi-Res Graph-Plotting
Subroutine in Integer BASIC
for the Apple II

by Richard Fam

75

An Integer BASIC subroutine is presented which
permits Hi-Res graph plotting. It includes X and Y axes
generation with scale markers as well as the plotting of
user specified points. This will make it easy to display
the results of a variety of problems, functions,
correlations, etc., from Integer BASIC.

The article entitled Apple II High Resolution Graphics Memory Orgainzation, by
Andrew H. Eliason is of tremendous value to those who wish to plot in Hi-Res
graphics. The following graph plotting subroutine utilizes formulae given in this
article.

The Graph Plot Subroutine

Referring to the listing: On being called by the GOSUB 9000 statement in the
main program, the subroutine first clears, page 1 of Hi-Res graphics memory at line
9023. This is quite a time-consuming process and the impatient experimenter
may care to replace this line with a CALL statement to an equivalent machine
language subroutine. I have actually tried this and found that it reduces the time
execution for the complete plotting routine by approximately half.

Having set the graphics and Hi-Res modes in line 9060, the routine then
proceeds to plot the X and Y axes. Scale markets are placed at 20-point intervals
along the two axes.

The final stage in the subroutine involves the plotting of the points. The
magnitude of these points is stored in matrix GPH which is dimensioned for 279
elements in the main program. Only values GPH(X) between 0 and 91 inclusive
can be plotted.

As you may recall, the display area of Hi-Res graphics is a matrix comprised of
280 horizontal by 192 vertical points. The subroutine fetches elements of GPH,
does the necessary calculations, and outputs the results on the screen. To prevent
the disfigurement of the two axes, I have avoided the plotting of points less than
one byte away from the Y-axis and on the X-axis itself.

76 Graphics

For successful application of this graph plotting subroutine, observe the
following rules:

a) Only an Apple II with a minimum of l 6K bytes of memory can be
used.

b) Ensure that the main program contains the statement DIM
GPH(279).

c) Only values of GPH(X) such that 0 GPH(X) 191 where X ranges
from 0 to 279, inclusive, will be plotted.

d) Set HIMEM:8191 to restrain intrusion into page 1 of Hi-Res graphics
memory.

Here are two short programs demonstrating the performance of the high
resolution graphics-plotting subroutine:

110 DIM GPH(279)
120 FOR I =OTO 279
130 GPH(I) = RND(191)
140 NEXT I
150GOSUB 9000
160 END

110 DIM GPH(279)
120 FOR I =0 TO 279
130 GPH(I) = 1/2-30
140 NEXT I
150 GOSUB 9000

10
11
12
14
15
16
18
20
22
24
26
28
30

9000
9001
9007
9008
9009
9010
9011
9012
9020
9021
9022
9023
9030
9040
9050
9060
9140
9150
9160
9170

9200
9210
9220
9230

9231
9240
9242
9260
9270
9280
9290
9310

9330

REM
REM
REM
REM

* *
* HI-RES GRAPH PLOTTING *

· * RICHARD FAM *

* GRAPH-PLOT
*
* COPYRIGHT (C) 1981
* MICRO INK, INC.

REM *
REM
REM
REM
REM
REM
REM
REM

* CHELMSFORD, MA 01824
* ALL RIGHTS RESERVED
*

*
*
*
*
*
*
*
*

REM *************************
REM
REM
REM * DATA IS STORED IN GPH(X}
REM * CONSISTING OF 200 POINTS
REM * 0 <= GPH(X} <=191
REM *
REM * SET HIMEM:8191
REM *
REM *
REM * CLEAR SCREEN
REM *
FOR I=8192 TO 16383: POKE I,O: NEXT I
REM *
REM * SET HIRES MODE
REM *
POKE -16304,0: POKE -16297,0: POKE -16302,0
REM *
REM * PLOT Y-AXIS
REM *

Fam Hi-Res Graph Plot

FOR LV=O TO 19l:PT=l: IF (LV+9} MOD 20=0 THEN PT=7: POKE (LV MOD 8*
1024+(LV/8} MOD 8*128+(LV/64)*40+8192) ,PT: NEXT LV
REM *
REM * PLOT X-AXIS
REM *
PT=O: FOR LH=O TO 279: IF LH MOD 20<>0 THEN 9240:PT=PT+l: FOR MK=l TO
2: POKE LH/7+16336-(1024*MK),64/(2 • ((PT+5) MOD 7))
NEXT MK: GOTO 9242
POKE LH/7+16336,255
NEXT LH
REM *
REM * PLOT POINTS
REM *
FOR LH=8 TO 279:LV=l91-GPH(LH}: IF LV<O OR LV>=l91 THEN 9330
BV=LV MOD 8*1024+(LV/8} MOD 8*128+(LV/64}*40+8192: POKE LH/7+BV,2 •
(LH MOD 7)
NEXT LH: RETURN

77

78 Graphics

How to Do a Shape Table
Easily and Correctly!

by John Figueras

The mechanism for generating shapes and characters
in Apple High Resolution Graphics is cumbersome and
prone to error. A very clear explanation of the
mechanism and pitfalls is presented here. But, best of
all, the program presented permits the user to create
the shapes interactively, using the keyboard and
display.

One of the most discouraging tasks facing the Apple owner is the creation of a
shape table. The table is required for generation of shapes and characters for high
resolution graphics, since Apple does not offer pre-formed plotting characters.
Thus, if you want to label the axes of a graph, the shape table can be used to supply
the characters required for the labels. It is also useful for producing special shapes
for games.

If, like me, you have tried to prepare a shape table using Apple's procedure, I
am sure you'll discover, as I did, that the procedure is time-consuming, tedious,
and error-prone. In several attempts, I have yet to generate a shape table using the
manual procedure given by Apple, that didn't end up with missing dots, spurious
projections or an unpredicted shape. At first I thought the problem was of my own
making, since Apple's directions are clear and apparently faultless . The use of the
words 11 apparently faultless'' in the last sentence implies that what I found was in
fact the case: Apple's procedure for creating a shape table has some real glitches. I
discovered these in the course of pursuing the work described below, and
developed a procedure that circumvents the glitches and produces perfect results
every time.

Apple's procedure for preparation of a shape table is carried out as follows: the
shape is first laid out as a dot pattern on a grid (figure 1); a series of plotting vectors
is superimposed on the pattern to trace out a continuous path that covers all
points to be plotted. The plotting vectors are defined either as move-only or as
plot-then-move vectors.

Figueras How to Do a Shape Table 79

-

•

•

Figure 1: Shape to be coded

move right ---+ 'move left ~

move up t move down ~
plot then move right,.

plot then move left_.

plot then move up t
plot then move down •

The shape in figure 1 is reproduced in figure 2 with the chain of plotting
vectors superimposed. The plotting vector chain may start at any point, but in
selecting this point you should know that the initial point in the shape is the point
that gets plotted at coordinates {X,Y) in the DRAW command. Therefore, your
choice of initial point determines the justification of the shape or character with
respect to the plotting location. If you want a center-justified character, then start
the vector sequence at the center of the shape; a left-justified character. must be
started at the left side, and so on.

The Apple manuals give the impression that it is immaterial where you start
the shape, but if you want to have your characters fall properly on a line, it is
something you must attend to. Knowing justification of the shape is important in
games where things bang together and in building up large patterns by plotting
sub-units adjacent to each other-cases in which it is important to know where
the boundaries of the shape fall relative to the point at which it is plotted.

80 Graphics

--.. -

•

Figure 2: Layout of Plotting Vectors. (S) Is the starting point.
With this choice of (S), the shape will be lower right justified
and will plot with one empty column to the right of the shape.

The next step in preparing the shape table requires that the chain of plotting
vectors in figure 2 be unfolded into a linear string, beginning with the initial point
of the pattern. For the shape in figure 2, the following sequence of vectors is
obtained after unfolding: 1 1 ~ l ~

r=rr~~~.,
The plotting vector string is then broken up into groups of two or three, each

group (confusion!) reading from right to left. To add a little more danger to the
game, the rules require that no group of vectors may end with a move-up vector or
with a plot-then-move vector, in which case the group will contain at most two
plotting vectors .

The table in figure 3a shows how the above string is subdivided. In this case,
because of the restrictions on termination, each group can contain only two
vectors . The rules for formulating these vectors groups are actually quite soundly
based, as will become clear in later considerations.

We are not done yet. In the next step, each plotting vector as it appears in the
table in figure 3a is replaced by a 3-bit (octal) code. The code is shown in figure 4,
along with the decimal equivalents. Note that the decimal code for a plot-then­
move vector is obtained simply by adding decimal 4 to the corresponding move­
only vector: There is a certain amount of method in this madness. The 3-bit code
translation for the plotting vectors in figure 4, which represent our shape, is
displayed in figure 3b.

Figueras How to Do a Shape Table 81

The next opportunity for confusion (and error) appears now, when the bit­
strings in Figure 3b are re-grouped and assembled into nybbles (figure 3c) and the
nybbles are each translated into hexadecimal numbers (figure 3d). The pairs of
hexadecimal numbers, of course, represent the content of one byte. This is the
byte that is stored in the shape table. In essence, then, the shape table is a list of
hexadecimal numbers, which, after translation into binary and re-grouping,
represents the collection of 3-bit codes equivalent to the plotting vectors, which
in tum represent the original shape. In the parlance of mathematics, the shape has
been mapped onto the set of hexadecimal numbers.

If by now the reader is feeling a tingle of impatience with this description,
multiply that feeling by a factor of at least ten, and you will be on the verge of
understanding what it feels like to carry out these steps. To add to the frustration,
there are enough booby traps laid by Apple to ensure quite a decent probability
that after you have gone through this travail, the shape that finally appears on
your screen will be misshapen. With a computer at hand, it seems silly to be
bogged down by a process like this-and that's what the rest of this article is
about: a computer program in Applesoft BASIC that allows easy graphic input of a
shape or character with automatic generation and storage of a correct shape
table-graphics without tears, so to speak.

~ ~ 00 111 011 0011 1011 3B

~ ~ 00 111 111 0011 1111 3F

t t 00 100 100 0010 0100 24

t ~ 00 100 001 0010 0001 21

t 00 100 001 0010 0001 21

t ~ 00 100 001 0010 0001 21

.__ t 00 011 100 0001 1100 IC

....... .- 00 111 111 0011 1111 37

• • 00 110 010 0011 0010 32

(a) (b) (c) (d)

Figure 3: Translation of shape vectors to Hexldeclmal Code.

82 Graphics

Approach to a Solution

Computer programmers have their own mind-set. For some, it is structure: a
beautiful program that reads like a novel. For others-start at the middle and
develop a nice, tight, efficient algorithm. I am an input-output bug. To me, the
proper questions that should be first answered are: how can I make it easy for
users of the program to get their data into the program; and how can the output be
made digestible?

In the present case, of course, the major problem is one of input. With the
equipment at hand-an Apple keyboard, video screen and a couple of floppy
disks-I settled on a display of a 15x15 grid and a cursor that can be moved by
hitting appropriate keys (Up, Down, Left, and Right). The shape is created by plot­
ting it as a dot pattern under control of the moveable cursor, using the P (for Plot)
key to lay down the dot pattern. One necessary key is the Quit key, which informs
the computer that the shape is done. A convenience key, E for Erase, is provided to
accommodate some of my sloppy keyboard habits; it facilitates undoing the last
plotted point. The selection of keys U,D,L and R for directing the cursor was
modeled after the set of allowed plotting vectors (there are no diagonal moves in
the set), and was a fortunate selection for easy formulation of the algorithm.

While the general format for input was quite clear, the approach to translating
that input into a shape table was not immediately clear. Two procedures are possi­
ble: you can store all of the input data in some sort of two-dimensional array in
memory and then analyze it, or you can take the input data as they are acquired
and develop the shape table on the fly. I seriously considered the first path, and in
fact, wrote a program that would translate the input pattern into a matrix of zeroes
and ones. Further consideration showed that analysis of the pattern would be dif­
ficult, one of the major problems being that of ensuring proper plotting of the
shape with respect to its starting point, i.e., justification. Moreover, the most effi­
cient approach in terms of processing time ~nd storage requirements for the shape
table is to confine generation of the plotting vectors to the occupied cells of the
grid as much as possible.

Such pattern tracing on an arbitrary two dimensional array presents a
formidable search problem, particularly with disconnected patterns. The solution
of the problem of efficiently tracing the input pattern was obvious as soon as I
realized that the keystrokes used by a person entering the pattern on the grid
constituted a continuous record of the pattern. By analyzing the keystroke pat­
tern, I could produce a string of equivalents. The inspiration for this may be
traceable in part to my knowledge of the way in which chemical structures are
recorded at Chemical Abstracts Service of the American Chemical Society, where
chemical typewriters, used for creating chemical structures, are connected to
computers which record the keystrokes of the operator entering the structure. The
record of keystrokes can then be "played back" to reproduce the structure exactly
as it was keyed in. With this basic approach decided upon, the outline of the
required algorithm became clear:

1) Select the position in memory at which the shape table is to be stored.

Figueras How to Do a Shape Table 83

2) Generate and display the working (15x15) grid.

3) Input the starting coordinates for the shape (required for justification).

4) Generate the proper 3-bit codes that represent the plotting vectors, based
on the keystrokes used to input the pattern.

5) Assemble the 3-bit codes (in groups of two or three, depending upon
Apple's strictures) into a byte.

6) Store the assembled byte in the shape table.

7) Provide for proper finishing-off of the current byte when the Quit key is
hit.

8) Add an end-of-record mark I a zero byte) required by Apple as a shape
terminator.

9) Store the table.

Most of these steps are straightforward, but two of them-generation of the
3-bit codes that represent plotting vectors, and their assembly into bytes (steps 4
and 5, above)-require further elaboration.

In Applesoft BASIC, the character returned by a keystroke is accessible with a
"GET" command; the instruction GET KEY$ will load the character accessed by
the next keystroke into the variable KEY$. We may examine KEY$ to determine
whether it contains a D, L, U, or Rand then do a table look-up {using the defini­
tions in figure 4) to retrieve the decimal value associated with the direction
implied by the keystroke. Each decimal value, of course, as stored in memory will
generate the proper 3-bit binary code. Subsequently, the keystroke preceding the
current one (which we thoughtfully saved in variable KSVE$) is examined. If
KSVE$ is a "P", then the current 3-bit code must represent a plot-then-move vec­
tor and decimal 4 as added to the decimal factor for the current key. If KSVE$ is
not a "P", then the current decimal key equivalent remains unaltered.

Assembly of the 3-bit codes into bytes involves only basic consideration of
decimal to binary conversion. Byte assembly is done in the program as each 3-bit
code becomes available, but for the purposes of discussion, let us assume that
3-bit codes, V1, V2 , V3 are available in that order from the last three keystrokes.
The first 3-bit code initializes the byte:

BYTE=V1

V1
00000)()()(

84 Graphics

The second 3-bit code must be added to the byte, but must first be left-shifted three
bits if the V, bits already present are to remain unchanged. This is done by multiply­
ing V2 by 8:

BYTE= BYTE+ 8*V2

Now for Va· To refresh your memory, you will observe in figure 4 that all plot­
then-move 3-bit codes have their left-most bits "on." Since there are only two
bits remaining unfilled in the byte, there is no way in which the plot status of the
third 3-bit code can be entered into the byte. In this case, processing of the byte
stops, and it is stored in the shape table, while Va is used to initialize the next
byte. This is the reason that plotting vectors cannot be stored as end vectors in a
byte, one of Apple's restrictions previously noted. In similar fashion, if Va cor­
responds to a move-up vector, with all bits zero, it is not loaded into the current
byte, but is used to initialize the next byte. The reason for this is not so obvious,
but is related to the aforementioned deduction that plotting vectors cannot appear
as end vectors in the byte. Suppose that the zero move-up vector Va could be
stored as an end vector; then everytime Va happened to be a plotting vector, the
last two bits in the byte would be a zero, and undesired up-moves would be en­
abled whenever a plot-then-move vector happened to occur in Va. Apple's restric­
tions make sense!

In the event that Va is neither a move-up nor a plot-then move vector, it is
added to the byte. Then it consists of an unambiguous two-bit code (figure 4) that
can fit into the remaining two bits of the byte. Addition of Va requires a 6-bit left
shift of Va to avoid changing the bits already present. This is done by multiplying
V3 by 64(= 26):

V3 V2 V,

BYTE= BYTE+ 64*V3 ZZYYYXXX

Plotting 3-Bit Decimal
Vectors Codes Equivalents

t 000 0

~ 001 1

' 010 2

~
Oll 3

t 100 4

....... 101 5

t llO 6

~ lll 7

Figure 4: Representation of Plotting Vectors as 3-blt Codes
and Decimal Equivalents.

Figueras How to Do a Shape Table 85

Earlier, I mentioned glitches designed into Apple's shape procedure that
would offer problems in obtaining correct shapes in graphics. There are actually
two kinds of glitches-one predictable and the other not. The predictable one is a
consequence of two facts: 1) Apple uses a zero byte as an end-of-record mark toter­
minate every shape; 2) the move-up vector is represented by a 3-bit code of 000. It
follows that several move-up vectors in a row will generate an end-of-record mark
and any part of the shape following thereafter will be forgotten. That's bad
enough. Worse is the unexpected fact that move-up codes (000) that lie on the left
part of the byte (most significant bits) are not recognized. For example, consider the
two cases of a plot-then-move right command followed by a move-up command,

00000101 {decimal 5)

and a move-up command followed by a plot-then-move right command,

00101000 (decimal 40).

Presumably, these commands should give the same net result. That's what you
think, and what I thought also! In fact, the move-up command implied in the left
bits of decimal 5 is not recognized by the system, and the byte is interpreted as a
plot-then-move right instruction only. Therefore, if you try to generate a 45 ° line
with the sequence

plot-then-move-right: move-up: plot-then-move-right: move-up ...

you will get a horizontal line, whereas the sequence

move-up: plot-then-move-right: move-up: plot-then-move-right .. .

will give the desired 45 ° line! There is nothing in Apple's literature that would
lead the unwary to suspect that these two sequences will not plot alike. Now you
know the source of those misshapen shapes.

The two problems described in the preceding paragraph-premature end-of­
record mark and non-plotting up-vectors that appear in the left bits-arise from
the definition of the up-vector as a zero 3-bit string. In fact, a concise statement of
the problem is that any byte with a value less than decimal 8 can be expected to
misbehave, unless it is the last byte in the shape table.

The solution to the problem lies in preventing the occurrence of these
dubious bytes. This can be done easily-especially with a computer program-by
introducing dummy right-and left-moves. The technique is simple: check the
value of the assembled byte; if it is less than decimal 8, the second vector in the
byte must correspond to the move-up (000) vector. In that case, replace the left­
most zero bits by a non-zero, move-right vector, transfer the move-up (000) vector
to the next byte and follow it by a move-left vector. By placing the move-up (000)
vector into the right-most three bits of the next byte, you ensure that it will be
recognized as an up-vector. The succeeding move-left vector undoes the effect of

86 Graphics

the move-right vector installed in the preceding byte so that the correct shape is
maintained. Implementation of this routine in a computer program is actually
quite easy, and resolves the problems introduced by the up-vector. Frankly, I don't
see how anyone could be expected to obtain predictable shapes from Apple's pro­
cedure using hand-methods for creating shape tables, considering the inherent
problems posed by the zero up-vector.

N, No. shapes Byte 1

Empty Byte 2

Directory 2*N Bytes

First Shape

Fig. 5: Memory Map for Shape Table

Figueras How to Do a Shape Table 87

The Program(sJ

Three programs were written to implement the computer-guided formulation
of a shape table: A shape file initialization program (SHAPE 1), a shape creating pro­
gram (SHAPE 2), a shape display program (figure 8) . These will be discussed briefly.
I hope that the following discussions ·coupled with the comments scattered
through the programs will enable you to follow the programs without difficulty.

Shape File Initialization

The principle shape-creating program requires a previously allocated disk file
for shape table storage. The initialization program (SHAPE 1) creates the disk file
and also establishes the name and length of the file. The program allocates space
for the shape table directory based on the number of shapes to be stored in the file,
a number that is declared by you during initialization. The memory map for a
shape table is stated in the first byte of the table; its maximum value is therefore
255, and this is the maximum number of shapes that can be stored in one shape
table. The directory contains addressing information that allows random access to
any shape in the table.

The directory falls between the first byte of the table and the beginning of the
first shape. The amount of space allocated to the directory is determined by the
number of shapes ultimately to be stored in the table; each shape requires two
bytes in the directory for addressing. The shape tables themselves may be any
length, up to a total length consistent with the 15x15 matrix in which the shapes
are created. The shape tables are stored end-to-end as they are added to the file,
each shape table ending in a zero byte as end-o{-record mark. The layout of the
shape file requires that any tables added to the file be accurately done, because
once a table is buried in the file, it cannot be simply replaced unless the replace­
ment has precisely the same length.

The file initialization program is also used for creating the cursor required for
mapping shapes on the 15x15 working grid produced by the principal program.
This relieves the user of the need to generate the cursor himself everytime he
opens a new shape file. The cursor is stored as the first shape in the shape file, and
the shape-creating program assumes that the cursor has already been stored for its
use. As a consequence of this arrangement, you must remember that the user­
generated shapes start with the second shape table in the file.

Although the file initialization program zeroes out all of the bytes in the
directory, there is no substantial reason for doing this, except that the string of
zero bytes makes it easy to determine where the directory ends and the shape
tables begin in a memory dump. This advantage will last only until the directory is
filled.

The Shape Creating Program

The BASIC program (SHAPE 2) that enables shape generation requires the use
of dual floppy disks, but can be easily changed for single floppy use by replacing

88 Graphics

"D2" in step 110 by "Dl." (Similar adjustments will have to be made in the
initialization and display programs, which store and access the shape file from
disk D2.) Tape users will have to replace disk 1/0 by suitable tape 1/0 in steps
100, 110 and 1360.

The program loads a pre-existing shape file (created by the initialization pro­
gram, if necessary) from disk, using the shape file name supplied by you on
request from the program. The file is loaded into a memory location which you are
also asked for by the program. A check is made (step 220) that there is room in the
shape file directory for another entry. If not, you will be so advised and the pro­
gram will abort. A pointer to the shape file required by the Apple system is set up
in step 260. The 15x15 plotting grid is turned on (steps 300-330) and you will be
asked to input the starting grid coordinates for the shape. Note, these are grid coor­
dinates and not screen coordinates that are asked for. The cursor will be displayed
on the center of the grid square that you have just selected as the starting point.
Some user helps are displayed in the text area under the grid (steps 410-440), and
you are off and running.

Manipulation of the R, L, D, and U keys will move the cursor in the
appropriate directions. The REPEAT key will work with these commands. Press­
ing the P key will plot a small circle inside the square in which the cursor current­
ly resides, and this plotted point will become part of the shape table being built in
memory. An image of the cursor will persist in the initial square-as a' 'negative''
image if you happened to plot at that square. The persistent cursor image serves as
a reminder to you of the location of the start of the shape. The cursor is made to
disappear and reappear in adjacent squares as you press the move keys by XDRA W
commands at steps 500 and 530; the IF statement at step 1040 in the subroutine
that draws the plotting circle is responsible for keeping the persistent image of the
cursor at the starting square. The flag, FLAG, that appears in step 480 and
elsewhere is used to allow the cursor to be turned off in a plotted square and to be
turned on again when the cursor moves to the next square.

Keystrokes are recorded in step 570. A previous step (550) saves the previous
two keystrokes in KI$ and KSVE$. The former record, KI$, is required to allow the
erase feature, controlled by the E key and discussed below. KSVE is needed for
proper generation of plot-then-move 3-bit codes, also discussed below. Interpreta­
tion of a keystroke takes place in steps 590-710, a sequence of IF's called a sieve.
This particular form of key screen was chosen because it gives almost complete
protection against inadvertent entry of incorrect keys. Once you are in the pro­
gram, you will find that the keyboard is effectively locked out for all keys except
those required by the program. If a non-applicable key is pressed, the sieve even­
tually routes the program through step 710 back to another key access at step 570.
Inside the sieve, when a keystroke has been identified as a move command
(L,R,U,D), the appropriate X- or Y- coordinate adjustment is made and the
decimal value of the 3-bit code applicable to the move is stored where the variable
KSVE$ is checked to see if the previous keystroke was a Plot command. If it was,
SYMBOL is incremented by a 4 (remember figure 4?), and SYMBOL is then
transmitted to the byte assembly area. More of this later.

Figueras How to Do a Shape Table 89

If the current keystroke corresponds not to a Move command, but to a Plot
command, the program sets the cursor disable flag, FLAG, calls the plot
subroutine. and then branches back to get the next keystroke (all of this is done in
step 680) . The Quit command forces a branch to a routine that closes out the cur­
rent byte (starting at step 1080), adds a record mark (step 1170) and draws the
completed shape (step 1170) . At this juncture, you are asked a series of questions,
the answers to which will allow you to:

1) forget the current shape and go back and try again without re-accessing the
current shape file from disk;

2) keep the current shape, update the shape file directory and start a new
shape;

3) forget the whole thing-add no new shapes to the file and quit;

4) load an updated shape file to disk and quit.

These alternatives will help you to avoid filling up the shape table with unwanted
shapes, and allow you to experiment without being forced to save all of your
experiments.

The closing out of the current byte preparatory to ending the current shape
definition (step 1080) poses a problem if the last keystroke is a Plot command
because a P command alone does not generate a vector. There is nothing to store
after a final P command, unless it is followed by some sort of move. The problem
is handled in steps 1100-1140 by adding an arbitrary up-move after a final Plot
command to generate a plot-then-move-up vector. (Note that in figure 2, the con­
cluding vector is a plot-then-move-down. This was done for the sake of clarity in
drawing only. The point is mentioned in case some unusually perceptive reader
notices that the foregoing description does not tally with the example in figure 2.)
The final vector is either added to the current byte, in which it will appear as the
only entry. If the last keystroke prior to dosing the current shape table is anything
other than a Plot command, the current byte can be closed out immediately
without further ado.

The erase command has the very limited capability of erasing the last Plot
command only. As discussed before, a Plot command alone does not result in
formation of a vector until it is followed by a command. Therefore, if a Plot com­
mand is issued in error and no move command follows it, no vector will be
generated and the shape table remains unchanged at this point. It is therefore
possible to undo the Plot command simply, without the complication of analyz­
ing the last byte for returning to the state that preceeded the mistaken command
(and it would be complicated!). At the point at which the Plot command is
mistakenly issued, KSVE$ has a certain value. If we wish to go back to the condi­
tion prior to the mistaken Plot command, we must restore that value to KSVE$ so
that when the correct command is issued it is properly interpreted when KSVE$ is
examined subsequently. The character required for this purpose lies waiting in
KI$. Thus, the erase command loads this previous value into KSVE$ and
" unplots" the incorrect plotting circle by re-plotting with the color "black"
(HCOLOR = 0 in step 720). Note that because of these limitations, no plot com­
mand can be undone after a move has been made.

90 Graphics

Byte assembly using the 3-bit codes (stored currently in SYMBOL) occurs in
780-980. The variable CYCLE keeps track of the number of 3-bit codes entered in­
to the current byte (called BYTE in the program). After the second 3-bit code is
loaded into BYTE (step 820) a check is made (step 840) to see if the byte is less
than 8; if it is, we know that the byte contains an umecognizable move-up vector
in the left five bits. In that case, a dummy move-right 3-bit code is inserted ~nto
the byte, the byte is stored (step 860) and a new byte is formed consisting of the re­
quired move-up (000) followed by a dummy move-left (110) to compensate for the
dummy move-right. The resulting byte contains the bit string 0001 1000, decimal
24, generated in step 880. Statements 950-980 take care of the cases in which the
third 3-bit code is a plot-then-move code or a move-up only code, which require
that the current byte be stored, and the current 3-bit code be loaded into the next
byte.

The Display Program

It is likely that your disk or tape will be replete with shape files tailored to
various uses, now that creating shape tables is so easy. A convenient display pro­
gram will become essential in order to find out which shapes are stored where.
The display program that accomplishes this (figure 8) is an example of how shape
files may be used in a program. The program constructs a 6 x 6 grid on the high
resolution screen and displays one shape per grid cell. To identify the location of
the shapes in the shape table, each occupied cell carries the shape index in the
upper left-hand corner. The numerals required for plotting these indices are
extracted from a shape table called NUMERALS that you will have to create at
storage location 20000 (decimal) by means of the shape creating program. The
numerals are restricted to a 5 x 7 grid, and are formatted as illustrated by the
example in figure 1. Sufficient space is reserved in the display squares to
accomodate three-digit numerals from 1through255. "Aha," you ask, "how can
255 shapes be displayed in a 6 x 6 grid?" The program provides for paging through
the shape table, 36 shapes at a time. The paging is activated by hitting any
alphanumeric key on the Apple keyboard.

The display program opens by getting the shape files that it needs-one for
numerals (step 50) and the table to be displayed (step 90). Pointers to the tables are
set up (steps 70 and 120) . Starting at step 180, each shape I is accessed in a
FOR ... NEXT loop. A grid-specific index is calculated (step 190) by taking the cur­
rent shape index I modulo 36 (step 190). For the first shape in each group of 36 (I
modulo 36 = 1), the screen is cleared {step 240) and the 6 x 6 grid is displayed
(steps 250-330) . Thernw and column positions for the I-the shape in the grid are
found (steps 360, 370). The shape index is "unpacked" into its separate digits
(steps 380-410) and these digits are plotted in the correct grid cell in the upper left­
hand corner (steps 430-480) . The NUMERALS sh~pe table is accessed in step 420
by placing the pointer to the NUMERALS shape table in (decimal) addresses 232
and 233t so that subsequent DRAW commands will refer to this table. In similar
fashion, when the shapes to be plotted are required, the address of the shape table
must be entered into addresses 232, 233, This program illustrates how any
number of shape tables may be used inside a program simply by supplying the cor­
rect pointers at the time that shapes are to be DAAWn XDRAWn.

Figueras How to Do a Shape Table 91

Parting Words

The 15x15 grid used for shape creation is the largest practical size for the
Apple screen with space provided for text. A larger grid can be accomodated by
eliminating the text area, but this will compromise the required starting coor­
dinate input. However, the number of cells could be increased by decreasing cell
size and using a smaller plotting figure. If you try this, it is convenient to select a
plotting grid with odd numbers of X and Y segments so that the central plotting
area falls on a grid square and not at the intersection of two grid lines. This is of
help in centering shapes.

You should also be aware, if it is not obvious by now, that the location of a
shape on the grid has no bearing on where it plots in high resolution graphics,
except with regard to the initial point of the shape, which alone determines
justification. You may use any convenient subsection of the full grid for plotting,
and it does not have to be the same subsection for each shape.

REM
REM
REM
REM
REM
REM
REM
REM
REM

10
11
1 2
14
15
16
18
20
22
24
25
26
28
29
30
35
40
50
60
7 0
80
90 N
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
2 50
260
270
280
290

* HOW TO DO A SHAPE TABLE *
* JOHN FIGUERAS *
*
*
*
*
*
*

SHAPEl

COPYRIGHT (C) 1981
MICRO INK, INC.

CHELMSFORD, MA 01824
ALL RIGHTS RESERVED

*
*
*
*
*
*

3 00

REM *
REM *

*
*

REM ***************************
REM
REM
INPUT "NAME OF SHAPE TABLE ";NAME$
INPUT "STARTING ADDRESS, DECIMAL ";ADDR
INPUT "NO. OF SHAPES TO BE STORED ";N
REM ZERO DIRECTORY
FOR I = 0 TO 2 * N + 1
POKE ADDR + I,O : NEXT
REM CALCULATE INDEX TO CURSOR

= 2 * N + 2
REM PUT CURSOR INDEX INTO DIRECTORY
POKE ADDR + 2 ,N - 256 * INT (N / 256)
POKE ADDR + 3 , INT (N / 256)
REM. CALC INITIAL ADDRESS TO CURSOR

INIT = ADDR + N
REM ENTER CURSOR SHAPE VECTORS
DATA 6 2 ,36,45,54,04,00
FOR I = 0 TO 5
READ A: POKE INIT + I,A: NEXT
REM GET INDEX TO NEXT SHAPE

N = N + 6
REM STORE NEW INDEX IN DIRECTORY
POKE ADDR + 4,N - 256 * INT (N / 256)
POKE ADDR + 5, INT (N / 256)
REM UPDATE SHAPE COUNTER
POKE ADDR,l
REM STORE INITIALIZED FILE ON DISK

D$ = CHR$ (4)
PRINT D$;"NOMON C,I,O"
PRINT D$;"BSAVE" +NAME$+ ",A"+ STR$ (ADDR) + ",L" +
",V0,02"
END

STR$ (N) +

92

10
12
14
16
18
20
21
22
23
24
25
26
27
28
30
32
35
40
50
60
70
BO
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

Graphics

REM
REM
REM
REM

* *
* HOW TO DO A SHAPE TABLE *
* JOHN FIGUERAS *

REM *
REM *
REM *
REM *
REM *
REM *
REM *
REM *

SHAPE2

COPYRIGHT (C) 1981
MICRO INK, INC.

CHELMSFORD, MA 01824
ALL RIGHTS RESERVED

*
*
*
*
*
*
*
*

REM ***************************
REM
PRINT
PRINT

TAB(6);"****CREATE A SHAPE TABLE****"

PRINT TAB(5);"J. FIGUERAS, ROCHESTER, N.Y.": PRINT
PRINT TAB(16)"9/12/79": PRINT
PRINT TAB(17)"****": PRINT
REM INPUT TABLE NAME AND LOCATION
INPUT "SHAPE TABLE NAME ";NAME$
INPUT "STARTING ADDRESS, DECIMAL ";ASVE
REM DISK ACCESSES USE DISK D2
D$ = CHR$ (4): PRINT D$;"NOMON C,I,O"

PRINT D$;"BLOAD " +NAME$ + ",A" + STR$ (ASVE) + ",VO,D2"
REM GET CAPACITY MAX OF FILE

MAX = PEEK (ASVE + 2) + 256 * PEEK (ASVE + 3)
MAX = (MAX - 2) / 2

REM GET NO. OF SHAPES IN TABLE
N = PEEK (ASVE)

REM GET FILE LENGTH
INDEX = PEEK (ASVE + 2 * N + 2) + 256 * PEEK (ASVE + 2 * N + 3)

REM COMPUTE ADDRESS OF NEXT FREE BYTE
ADDR = ASVE + INDEX

REM SEE IF FILE IS FULL
IF MAX > N THEN 260
PRINT "SHAPE TABLE FULL. NEXT FREE BYTE AT ";ADDR
GOTO 1370
REM SET UP ADDRESS POINTERS TO TABLE
POKE 232,ASVE - 256 * INT (ASVE / 256): POKE 233, INT (ASVE / 256)
REM UPDATE SHAPE COUNTER

N = N + 1: POKE ASVE,N
REM DISPLAY PLOTTING GRID. INITIALIZE COUNTER, CYCLE
HCOLOR= 3: SCALE= 1: ROT= O:CYCYLE = 0
HGR
FOR X = 0 TO 150 STEP 10: HPLOT X,O TO X,150: NEXT
FOR Y = 0 TO 150 STEP 10: HPLOT 0, Y TO 150,Y: NEXT
REM CLEAR TEXT AND GET INITIAL PLOT COORDS
PRINT : PRINT : PRINT : PRINT
PRINT "ENTER STARTING COORDS"
INPUT "X ":X:X = 10 * X - 5
INPUT "Y ";Y:Y = 10 * Y - 5
DRAW l AT X,Y:XS = X:YS = Y
RE~ CLEAR TEXT. DISPLAY INSTRUCTIONS
PRINT : PRINT : PRINT : PRINT
PRINT "MOVE PLOT CURSOR WITH KEYS"
PRINT "L-LEFT R-RIGHT U-UP D-DOWN"
PRINT "P TO PLOT Q TO QUIT"
REM INITIALIZE KEY$. PLOT CURSOR

KEY$= "":KSVE$ = "": GOTO 570
REM FLAG RE-ENABLES CURSOR AFTER A PLOT DISABLE
IF FLAG = 1 THEN 520
REM ERASE CURSOR IN PREVIOUS SQUARE
XDRAW l AT Xl,Yl
REM PLOT CURSOR AT NEW X,Y. SAVE X,Y

Xl = X:Yl = Y:FLAG = 0
XDRAW l AT X,Y

Figueras How to Do a Shape Table

540 REM SAVE LAST TWO KEYSTROKES. KI$ IS NEEDED FOR ERASE R OUTLINE
550 KI$ = KSVE$:KSVE$ = KEY$
560 REM GET NEW KEYSTROKE
570 GET KEY$
580 REM GO TO SIEVE TO GET 3-BIT PLOT VECTOR FROM KEY$ AND KSVE$
590 IF KEY$ < > "U" THEN 610
600 SYMBOL = O:Y = Y - 10: GOTO 760
610 IF KEY$ < > "R" THEN 630
620 SYMBOL = l:X = X + 10: GOTO 760
630 IF KEY$ < > "D" THEN 650
640 SYMBOL = 2:Y = Y + 10: GOTO 760
650 IF KEY$ < > 0 L" THEN 670
660 SYMBOL = 3:X = X - 10: GOTO 760
670 IF KEY$ < > "P" THEN 690
680 FLAG = 1: GOSUB 1000: GOTO 530
690 IF KEY$ = "Q" THEN 1080
700 REM NEXT STATEMENT PROTECTS FROM KEYING ERROR
710 IF KEY$ < > "E" THEN 570
720 HCOLOR= O:FLAG = 0: GOSUB 1000
730 REM SET UP PRE-PLOT STATUS
740 KSVE$ = KI$: HCOLOR= 3: GOTO 500
750 REM ADJUST 3-BIT VECTOR FOR PLOT
760 IF KSVE$ = "P" THEN SYMBOL = SYMBOL + 4
770 REM LOAD 3-BIT VECTOR INTO BYTE
780 CYCLE = CYCLE + l
790 IF CYCLE < > l THEN 810
800 BYTE = SYMBOL: GOTO 480
810 IF CYCLE < > 2 THEN 900
820 BYTE = BYTE + 8 * SYMBOL
830 REM PROTECT AGAINST PREMATURE END-OF-RECORD
840 IF BYTE > 7 THEN 480
850 REM ENTER DUMMY RIGHT MOVE AND STORE BYTE
860 BYTE = BYTE + 8: POKE ADDR,EYTE:ADDR = ADDR + 1
870 REM ENTER UP MOVE AND DUMMY LEFT MOVE IN NEW BYTE
880 BYTE = 24:CYCLE = 2: GOTO 480
890 REM ID THIRD 3-BIT VECTOR IS A MOVE ONLY, FINISH BYTE; ELSE LOAD BY

TE INTO TABLE AND STORE 3-BIT VECTOR IN NEXT BYTE.
900 IF SYMBOL > 3 THEN 930
910 BYTE = BYTE + 64 * SYMBOL
920 REM STORE BYTE
930 POKE ADDR,BYTE:ADDR = ADDR + l
940 REM STORE 3-BIT VECTOR IN NEXT BYTE IF NEEDED
950 IF SYMBOL = 0 OR SYMBOL > 3 THEN 980
960 REM PREPARE FOR NEXT BYTE. GET NEXT 3-BIT VECTOR
970 CYCLE = 0: GOTO 480
980 CYCLE = l:BYTE = SYMBOL: GOTO 480
990 REM PLOT ROUTINE
1000 FOR Y2 Y - 3 TOY + 3 STEP 6: HPLOT X - l,Y2 TO X + l,Y2: NEXT
1010 FOR Y2 = Y - 2 TO Y + 2 STEP 4: HPLOT X - 2,Y2 TO X + 2,Y2: NEXT
1020 FOR Y2 = Y - 1 TO Y + 1: HPLOT X - 3,Y2 TO X + 3,Y2: NEXT
1030 REM TURN OFF CURSOR IN PLOTTED SQ.
1040 IF X = XS AND Y = YS THEN RETURN
1050 XDRAW 1 AT X,Y: RETURN
1060 REM PREPARE BYTE FOR QUIT
1070 REM CLOSE OUT BYTE FOR MOVE-ONLY
1080 IF KSVE$ < > •p• THEN 1150
1090 REM USE PLOT-THEN-UP VECTOR TO END
1100 IF CYCLE < > 2 THEN 1120
1110 POKE ADDR,BYTE:ADDR = ADDR + 1
1120 IF CYCLE < > 1 THEN 1140
1130 BYTE = BYTE + 32: GOTO 1150
1140 BYTE = 4
1150 POKE ADDR,BYTE:ADDR = ADDR + 1
1160 REM ADD RECORD MARK. DISPLAY NEW SHAPE
1170 POKE ADDR,O:ADDR = ADDR + 1: XDRAW NAT 200,75
1180 INPUT " SAVE SHAPE? Y/N ";KI$
1190 IF KI$ = "Y" THEN 1220
1200 N = N - 1: GOTO 180
1210 REM GET INDEX FOR NEXT FREE BYTE
1220 N = N + l:ADDR = ADDR - ASVE
1230 IF N < MAX THEN 1270
1240 PRINT "WARNING: TABLE FULL WITH THIS SHAPE"
1250 IF N > MAX THEN 1310
1260 REM STORE INDEX IN DIRECTORY

93

94 Graphics

1270
1280
1290
1300
1310
1320
1330
1340
1350
l360

l370

POKE ASVE + 2 * N,ADDR - 256 * INT (ADDR / 256)
POKE ASVE + 2 * N + 1, INT (ADDR / 256)
INPUT "DONE? Y/N ";KI$
IF KI$ = "N" THEN 160
INPUT "SAVE TABLE? Y/N ";KI$
REM RESPONSE PROTECTED AGAINST RANDOM KEY HIT
IF KI$ = •y• THEN 1360
IF KI$ = "N" THEN 1370
GOTO 1310
PRINT D$;"BSAVE" +NAMES+ ",A"+ STR$ (ASVE) + ",L" +

)
END

10 REM ***************************
12 REM * *
14 REM * HOW TO DO A SHAPE TABLE *
16 REM * JOHN FIGUERAS *
1 7 REM * *
18 REM * SHAPE3 *
20 REM * *
22 REM * COPYRIGHT (CJ 1981 *
23 REM * MICRO INK, INC. *
24 REM * CHELMSFORD, MA 01824 *
25 REM * ALL RIGHTS RESERVED *
26 REM * *
27 REM ***************************
28 REM
30 REM **** DISPLAY SHAPE TABLE ****
32 REM LOAD NUMERALS SHAPE FILE
35 PRINT : PRINT : PRINT "HIT ANY KEY FOR EACH PAGE OF TABLE"
40 D$ = CHRS (4): PRINT D$;"NOMON c,r,o•
50 PRINT D$;"BLOAD NUMERALS,A20000,D2"
60 REM SET UP POINTER TO NUMERALS
70 NH! = 78:NL = 32
80 REM GET TABLE FOR DISPLAY
90 INPUT "SHAPE TABLE NAME ";NAMES
100 INPUT "STARTING ADDRESS ";ADDR
110 REM SET UP POINTER TO SHAPE TABLE
120 AH!= INT (ADDR / 256):ALO = ADDR - 256 *AH!
130 REM GET NO. OF SHAPES FOR DISPLAY
140 NN = PEEK (ADDR)
150 REM INITIALIZE SCREEN
160 HGR : POKE - 16302,0
170 HCOLOR= 3: SCALE= 1: ROT= 0
180 FOR I = 1 TO NN
190 !MOD = I - 36 * INT (I / 36)
200 IF !MOD < > 1 THEN 350
210 GET KEY$
220 REM SCLEAR SCREEN AND CREATE GRID
230 REM GRID WILL HOLD 36 SHAPES
240 CALL 624 50
250 HPLOT 0,0 TO 269,0 TO 269,180 TO 0,180 TO 0,0
260 FOR L = 45 TO 269 STEP 45
270 FOR J = 0 TO 180 STEP 10
280 HPLOT L,J
290 NEXT J: NEXT L
300 FOR L = 30 TO 180 STEP 30
310 FOR J = 0 TO 269 STEP 45
320 HPLOT J,L
330 NEXT J: NEXT L
340 REM CALCULATE GRID SQUARE COORDS.
350 IF IMOD = 0 THEN !MOD 36
360 ROW= INT ((IMOD - 1) / 6)
370 COL = !MOD - 6 * ROW - 1
380 Cl = INT (I / 100)

STR$ (ADDR

390 C2 = I - 100 * Cl
400 C2 = INT (C2 / 10)
410 C3 = I - 10 * INT (I / 10)
420 POKE 232,NLO: POKE 233,NHI

Figueras

430 Cl = Cl + 2:C2 = C2 + 2:C3 = C3 + 2
440 IF Cl = 2 THEN 460
450 DRAW Cl AT 45 * COL + 5,30 * ROW + 7
460 IF C2 = 2 AND Cl = 2 THEN 480
470 DRAW C2 AT 45 * COL + 10,30 * ROW + I
480 DRAW C3 AT 45 * COL + 15,30 * ROW+ 7
490 REM NOW GET SHAPES
500 POKE 232,ALO: POKE 233,AHI
510 DRAW I AT 45 * COL + 30,30 * ROW + 15
520 NEXT I
530 GET KEY$
540 TEXT
550 END

How to Do a Shape Table 95

Ed. note: In order for SHAPE 3 to work correctly, you will have to create a shape
table called ''Numerals.'' Remember that this will be an 11 entry table, with the
numerals filling slots 2-11 (since slot 1 is filled with the 'cursor' - see article).
Use SHAPE 1 to locate "Numerals" at 20000, and use SHAPE 2 to fill it. Put the
numeral 11 l11 in first, and work up to numeral 110."

96 Graphics

Define Hi-Res Characters
for the Apple II

by Robert F. Zant

The Apple contributed software bank, Volume 3,
contains a very interesting and useful high resolution
character generator. The hand method described to
generate the character table, unfortunately, is
somewhat less than exciting. The following routine
relieves you of the burden of the hand method, and
allows you to exploit the generator to the maximum.

The characters are represented in the table in a coded, reverse-image format.
The code is based on a 7 by 8 dot matrix representation for each character. The for­
mat for an "L" is depicted below. Note that a border is left at the top and side so
that characters will be separated on the screen .

•
•
•
*
*

• *
* * * * * *

The coded table entry is derived from the format by substituting a zero for
' each dot, and a one for each asterisk. Each 1ine of the matrix is thereby coded into

one byte. The high order bit is set to zero in each byte. Eight bytes are required to
encode each character. The code for the "L" depicted above would be

02,02,02,02,02,42, 7E,OO

The following program assists in defining characters and substituting them
into the character table. Each character is defined in a regular dot matrix format,
rather than in reverse-image. The program automatically calculates the binary
code for the equivalent rotated version. The letter "L" would be entered as:

Zant Define Hi-Res Characters 97

•
•
•
•
•
• • •
* • • • * •

Note that the dot matrix must remain intact, and must contain only dots and
asterisks. The command to store the character, the CTRL S, must be entered after
the matrix, on the ninth line. A carriage return is required after each command.

At the beginning of the run, the operator specifies the table position (0 to 127)
for the first character to be defined. Thereafter, characters are automatically
stored at succeeding locations in the table. Separate runs of the program can be
used to define characters in non-contiguous table locations.

98 Graphics

REM 10
12
14
16
18
20
22
24
25
26
27
28
29
30
100
200
300
350
400
425
450
500
600
700
750
775
800
900
1000
1100
1200
1300
1400
1500
2000
2100
2200
2300
2500
3000
3050
31 00
3200
3250
3300
3400
3500
3600
3700
3800
3900
3950
4000
4100
4200
4250
4300
4400
4500
9000

REM * *
REM * DEFINE HI-RES CHARACTERS *
REM * ROBERT F. ZANT *
REM * *
REM * CHARACTERS *
REM * *
REM * COPYRIGHT (C} 1981 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
REM *
REM ****************************
REM

TEXT : CALL - 936
VTAB 5: PRINT "ENTER DECIMAL EQUIVALENT"
PRINT "OF FIRST 'ASCII' CHARACTER"
PRINT " (MAXIMUM VALUE OF 127)
INPUT B
IF B > • 0 AND B < 128 THEN 450: PRINT "RE~ENTER": GOTO 400

B • 26624 + B ' 8
CALL - 936
PRINT "CHANGE THE DOTS IN THE FOLLOWING MATRIX"
PRINT "TO ASTERISKS TO DESCRIBE A F~GURE."
PRINT "USE 'ESC C', 'ESC D', ' ->' AND '<-' TO EDIT."
PRINT "(LEAVE DOTS THAT ARE NOT REPLACED}
PRINT "ENTER A 'CTRL S' TO STORE THE FIGURE"
PRINT "ENTER A 'CTRL Q' TO QUIT"

REM PRINT MATRIX
VTAB 9
FOR I • 0 TO 7
PRINT" ••••••• "
NEXT I
VTAB 9
REM GET INPUT CHARACTER
CALL - 657
IF PEEK (512)
IF PEEK (512)
GOTO 2000

147 THEN 3000
145 THEN 9000

REM ENCODE CHARACTER
A • B: REM SAVE BEGINNING OF CHARACTER

REM LOOK THROUGH MATRIX
FOR I 1064 TO 1960 STEP 128

c • 0
FOR J 0 TO 6
IF PEEK (I + J} 174 THEN 3700
IF PEEK (I + J} < > 170 THEN 4000

c • c + 2 • J
NEXT J
POKE B,C:B B + 1
NEXT I
GOTO 1000
REM ERROR IN MATRIX
VTAB 20
PRINT "MATRIX CONTAINS INVALID CHARACTER"
PRINT "RE-ENTER":B •A
FOR I • 1 TO 1000: NEXT
VTAB 20: CALL - 958
GOTO 1500
END

Apple II High Resolution
Graphics Memory Organization

by Andrew H. Eliason

99

This section on graphics would not be complete
without some explanation of how the Apple displays its
high resolution screens. The following informative
article explains how the Apple's Hi-Res memory is
displayed on the screen. A demonstration program is
included which clarifies the concepts presented.

One of the most interesting, though neglected, features of the Apple II computer is
its ability to plot on the television screen in a high resolution mode. In this mode,
the computer can plot lines, points and shapes on the TV display area in greater
detail than is possible in the color graphics mode (GR) which has a resolution of
40 x 48 maximum.

In the high resolution (Hi-Res) mode, the computer can plot to any point
within a display area 280 points wide and 192 points high. While this resolution
may not seem impressive to those who have used plotters and displays capable of
plotting hundreds of units per inch, it is nonetheless capable of producing a very
complex graphic presentation. This may be easily visualized by considering that a
full screen display of 24 lines of 40 characters is ''plotted'' at the same resolution.
An excellent example of the Hi-Res capability is included in current Apple II
advertisements.

Why, then, has relatively little software appeared that uses the Hi-Res
features? One of the reasons may be that little information has been available
regarding the structure and placement of words in memory which are interpreted
by Hi-Res hardware. This information is essential to users who wish to augment
the Apple Hi-Res routines with their own, or to explore the plotting possibilities
directly from BASIC. In a fit of curiosity and Apple-insomnia, I have PEEKed and
POKEd around in the Hi-Res memory area. The following is a summary of my
findings. Happy plotting!

Each page of Hi-Res Graphics Memory contains 8192 bytes. Seven bits of each
byte are used to indicate a single screen position per bit in a matrix of 280H x
192V. The eighth bit of each byte is not used in Hi-Res and the last eight bytes of
every 128 are not used.

100 Graphics

[Note: Subsequent to the original publication of this article, Apple Computer
began to produce machines which had the added capability of plotting two more
colors, blue and orange, to the Hi-Res screen. If the previously unused most
significant bit of any byte is set to 1, the hardware will generate the new colors
(blue instead of violet, orange instead of green) for each of the other bits within the
corresponding byte. If your Apple II is a "six color" machine, you will see the
results of this when you enter a number between 128 and 255 into the program
given in the article. It has also been discovered that the six color hardware will
cause an orange dot to appear to the left(!) of column zero in the associated row,
under some circumstances, when the sixth bit of the last byte of the eight ''un­
used" bytes is set.]

The bits in each byte and the bytes in each group are plotted in ascending
order in the following manner. First consider the first two bytes 0£.page 1. (Page 2
is available only in machines with at least 24K).

BYTE 8192 8193

SCREEN
POSITION 0 2 3 4 5 6 7 8 9 10 11 12 13

BIT 0 1 2 3 4 5 6 0 1 2 3 4 5 6

V GVGV GV GVG v G v G

(Bit 7 not used) 7 7

v VIOLET
G GREEN

Figure 1 represents the screen position and respective bit and word positions
for the first 14 plot positions of the first horizontal line. If the bit is set to 1 then
the color within the block will be plotted at the position indicated. If the bit is
zero, then black will be plotted at the indicated position. You can see that even
bits in even bytes plot violet, even bits in odd bytes plot green and vice versa.
Thus all even horizontal positions plot violet and all odd horizontal positions plot
green. To plot a single white point, you must plot the next higher or lower
horizontal position along with the point, so that the additive color produced is
white. This is also true when plotting single vertical lines.

The memory organization for Hi-Res is, for design and programming
considerations, as follows: Starting at the first word, the first 40 bytes (0-39) repre­
sent the top line of the screen (40 bytes x 7 bits = 280). The next 40 bytes,
however, represent the 65th line (i.e., vertical position 64) . The next 40 bytes

Eliason Hi-Res Graphics Memory 101

represent three lines at positions 8, 72 and 136, the next group at positions 16, 80
and 142, and so on until 1024 bytes have been used. The next 1024 bytes represent
the line starting at vertical position 1 (second line down) in the same manner.
Eight groups of 1024 represent the entire screen. The following simple program
provides a good graphic presentation as an aid to understanding the above descrip­
tion. Note that there is no need to load the Hi-Res machine language routines with
this program. Set HIMEM:8191 before you type in the program.

100 REM SET HIMEM:8191
110 REM Hi-Res GRAPHICS LEARNING AID
120 POKE -16304,0: REM SET GRAPHICS MODE
130 POKE -16297,0: REM SET Hi-Res MODE
140 REM CLEAR PAGE· TAKES 20 SECONDS
150 FOR I =8192 TO 16383: POKE 1,0: NEXT I
160 INPUT "ENTER BYTE (1 to 127)", BYTE
170 POKE -16302,0: REM CLEAR MIXED GRAPHICS
180 FOR J=8192 to 16383: REM ADDRESS'
190 POKE J, BYTE: REM DEPOSIT BYTE IN ADDRESS
200 NEXT J
210 POKE -16301,0: REM SET MIXED GRAPHICS
220 GOTO 160
999 END

An understanding of the above, along with the following equations will allow
you to supplement the Hi-Res graphics routines for memory efficient program­
ming of such things as: target games, 30 plot with hidden line suppression and 30
rotation, simulation of the low resolution C = SCRN (X, Y) function, etc. Also,
you may want to do some clever programming to put Flags, etc., in the unused
8128 bits and 512 bytes of memory!

Hi-Res Graphics Equations and Algorithms

Where:

FB = ADDRESS OF FIRST BYTE OF PAGE.
PAGE 1 = 8192 PAGE 2 = 16384

LH = HORIZONTAL PLOT COORDINATE. 0 TO 279
LV = VERTICAL PLOT COORDINATE. 0 TO 191
BV = ADDRESS OF FIRST BYTE IN THE LINE OF 40
BY = ADDRESS OF THE BYTE WITHIN THE LINE AT BV
Bl = VALUE OF THE BIT WITHIN THE BYTE WHICH CORRESPONDS

TO THE EXACT POINT TO BE PLOTIED.

Given: FB,LH,LV

BV = LV MOD 8 * 1024 + (LV/8) MOD 8 * 128 + (LN/64) * 40 +
FB

BY = LH/7 + BV
Bl = 2 (LH MOD 7)

102 Graphics

To Plot a Point (Without Hi-Res Plot Routine):

LH = X MOD 280: LV = Y MOD 192 (OR)
LV = 192-Y MOD 192

FB = 8192
BV = LV MOD 08 * 1024 + (LV/8) MOD 8 * 128 + (LV/64) * 40 + FB

BY = LH/7 + BV
Bl = 2 (LH MOD 7)
WO = PEEK (BY)
IF (WO/Bl) MOD 2 THEN RETURN
POKE BY, Bl + WO
RETURN

To Remove a Point, Substitute:

IF (WO/Bl) MOD 2 = 0 THEN RETURN
POKE BY, WO-Bl

To Test a Point for Validity, the Statement:

"IF (WO/Bl) MOD 2" IS TRUE FOR A PLOTTED POINT
AND FALSE (= 0) FOR A NON PLOTTED POINT.

10 REM **************************
12 REM * *
14 REM * HI-RES GRAPHICS MEMORY *
16 REM * ORGANIZATION *
18 REM * ANDREW H. ELIASON *
20 REM *
22 REM *
24 REM *
25 REM *
26 REM *
27 REM *
28 REM *

*
GRAPHICS-ORG *

*
COPYRIGHT (C) 1981 *

MICRO INK, INC. *
CHELMSFORD, MA 01824 *

ALL RIGHTS RESERVED *
29 REM * *
30 REM **************************
96 REM

100 REM SET HIMEM:8191
110 REM HIRES GRAPICS LEARNING AID
120 POKE -16304,0: REM SET GRAPHICS MODE
130 POKE -16297 , 0: REM SET HIRES MODE
140 REM CLEAR PAGE - TAKES 20 SECONDS
150 FOR I=8192 TO 16383: POKE I,O: NEXT I
160 INPUT "ENTER BYTE (1 TO 127)",BYTE
170 POKE -16302,0: REM CLEAR MIXED GRAPHICS
180 FOR J=8192 TO 16383: REM ADDRESS'
190 POKE J,BYTE: REM DEPOSIT BYTE I N ADDRESS
200 NEXT J
21 0 POKE -16301,0: REM SET MIXED GRAPHICS
220 GOTO 160
999 END

5
EDUCATION

Introduction

Apple Pi
Robert f. Bishop

Sorting Revealed
Richard C. Vile, fr.

Solar System Simulation with or without an Apple II
David A Partyka

Programming with Pascal
John P. Mulligan

103

104

105

109

134

143

104

Introduction
Over the past several years, the computer has clearly made its mark on the con­
cept of "education." Most secondary school curricula now offer some sort of com­
puter programming. And even more importantly, CAI (Computer Assisted
Instruction) is being introduced in a wide variety of less mathematical subjects.
Two virtues of the computer, patience and accuracy, make it well adapted to the
task of education. This section should help you to appreciate these noble virtues
of your Apple!

"Apple Pi" by Bob Bishop uses an Integer BASIC program to find the value of
Pi to the lOOOth decimal place. "Sorting Revealed" by Richard Vile discusses
computer sorting, and offers five Integer BASIC programs which graphically
demonstrate various types of sorts. "Solar System Simulation" by Dave Partyka
discusses the motions · of the planets and uses and an Applesoft hi-res graphics
program to show those motions. The last article in the section, ''Programming
with Pascal" by John Mulligan, provides an overview of Apple Pascal and several
sample Pascal procedures. So explore the learning possibilities available with your
Apple.

105

Apple Pi
by Robert f. Bishop

Did you ever want to know the value of Pi to 1000
decimal places? The following article briefly describes
a method to calculate this value, and then implements
the method using Apple Integer BASIC.

Everyone knows that the value of Pi is about 3.1416. In fact, its value has been
known this accurately as far back as 150 A.O. But it wasn't until the sixteenth
century that Francisco Vieta succeeded in calculating Pi to ten decimal places.

Around the end of the sixteenth century the German mathematician, Ludolph
von Ceulen, worked on calculating the value of Pi until he died at the age of 70.
His efforts produced Pi to 35 decimal places.

During the next several centuries a great deal of effort was spent in computing
the value of Pi to even greater precision. In 1699 Abraham Sharp calculated Pi to
71 decimal places. By the mid 1800's its value was known to several hundred
decimal plates. Finally, in 1873, an English mathematician, Shanks, determined
Pi to 707 decimal places, an accuracy which remained unchallenged for many
years.

I was recently rereading my old copy of Kasner & Newman's Mathematics
and Imagination (Simon & Schuster, 1940), where I found the series expansion:

16(-l)K+l ~

(2K-1)52K-l L
4(-l)K+l

(2K-1)2392K-l

The book indicated that this series converged rather quickly but '' ... it would
require ten years of calculation to determine Pi to 1000 decimal places.'' Clearly
this statement was made before modem digital computers were available. Since
then, Pi has been computed to many thousands of decimal places. But Kasner &
Newman's conjecture of a ten-year calculation for Pi aroused my curiosity to see
just how long it would take my little Apple II computer to perform the task.

106 Education

Program Description

My program to compute the value of Pi is shown in listing 1. It was written
using the Apple II computer's integer BASIC and requires a 16K system (2K for the
program itself; 12K for data storage) . The program is fairly straightforward but a
brief discussion may be helpful.

The main calculation loop consists of lines 100 through 300; the results are
printed in lines 400 through 600. The second half of the listing contains the multi­
ple precision arithmetic subroutines. The division, addition, and subtraction
routines start at lines 1000, 2000, and 3000, respectively.

In order to use memory more efficiently, PEEK and POKE statements were
used for arrays instead of DIM statements. Three such arrays are used by the pro­
gram: POWER, TERM, and RESULT. Each is up to 4K bytes. long and starts at the
memory locations specified in line 50 of the program.

The three arrays mentioned above each store partial and intermediate results
of the calculations. Each byte of an array contains either one or two digits, depend­
ing on the value of the variable, TEN. If the number of requested digits for Pi is
less than about 200, it is possible to store two digits per byte; otherwise, each byte
must contain no more than one digit. (The reason for this distinction occurs in
line 1070 where an arithmetic overflow can occur when trying to evaluate higher
order terms of the series if too many digits are packed into each byte.)

The program evaluates the series expansion for Pi until the next term of the
series results in a value less than the requested precision. Line 1055 computes the
variable, ZERO, which can be tested to see if an underflow in precision has occur­
red. This value is then passed back to the main program where, in line 270, it
determines whether or not the next term of the series is needed.

Results

Figure 1 shows the calculated value of Pi to 1000 decimal places. Running the
program to get these results took longer than it did to write the program! (The pro­
gram ran for almost 40 hours before it spit out the answer.) However, it took less
than two minutes to produce Pi to 35 decimal places, the same accuracy for which
Ludolph von Ceulen spent his whole life striving!

Since the program is written entirely in BASIC it is understandably slow. By
rewriting all or part of it in machine language its performance could be vastly
improved. However, I will leave this implementation as an exercise for anyone
who is interested in pursuing it.

Note: You must set HIMEM:5120.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
20
30
50
60
70

100
125
150
200
210
220
230
240
250
260
270
300
400
500
510

520
530
540
560
570
580
590
600
990

1000
1010
1020
1030
1040
1050
1055
1060
1070
1080
1090
1200
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2990
3000
3010
3020
3030

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

* *
* APPLE PI *
* ROBERT J. BISHOP *
* *
* APPLE PI *
* *
* COPYRIGHT (C} 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
* *

Bishop Apple Pi

CALL -936: VTAB 10: TAB 5: PRINT "HOW MANY DIGITS DO YOU WANT";
INPUT SIZE
CALL -936
TEN=lO: IF SIZE>200 THEN 50
TEN=lOO:SIZE=(SIZE+l}/2
POWER=5120:TERM=6144:RESULT=7168
DIV=l000:ADD=2000:SUB=3000:INIT=4000:COPY=5000
DIM CONSTANT(2):CONSTANT(l)=25:CONSTANT(2)=239
REM MAIN LOOP
FOR PASS=! TO 2
GOSUB !NIT
GOSUB COPY
POINT=TERM:DIVIDE=EXP: GOSUB DIV
IF SIGN>O THEN GOSUB ADD
IF SIGN<O THEN GOSUB SUB
EXP=EXP+2:SIGN=-SIGN
POINT=POWER : DIVIDE=CONSTANT(PASS): GOSUB DIV
IF PASS=2 THEN GOSUB DIV
IF ZERO< >O THEN 200
NEXT PASS
REM PRINT THE RESULT
PRINT : PRINT

107

PRINT "THE VALUE ·oF PI TO ";(TEN/lOO+l)*SIZE;" DECIMAL PLACES:": PRINT

PRINT PEEK (RESULT};".";
FOR PLACE=RESULT+l TO RESULT+SIZE
IF TEN=lO THEN 570
IF PEEK (PLACE}<lO THEN PRINT "O";
PRINT PEEK (PLACE);
NEXT PLACE
PRINT
END
REM
REM DIVISION SUBROUTINE
DIGIT=O:ZERO=O
FOR PLACE=POINT TO POINT+SIZE
DIGIT=DIGIT+ PEEK (PLACE)
QUOTIENT=DIGIT/DIVIDE
RESIDUE=DIGIT MOD DIVIDE
ZERO=ZERO OR (QUOTIENT+RESIDUE)
POKE PLACE,QUOTIENT
DIGIT=TEN*RESIDUE
NEXT PLACE
RETURN
REM
REM ADDITION SUBROUTINE
CARRY=O
FOR PLACE=SIZE TO 0 STEP -1
SUM= PEEK (RESULT+PLACE)+ PEEK (TERM+PLACE)+CARRY
CARRY=O
IF SUM<TEN THEN 2080
SUM= SUM-TEN
CARRY=!
POKE RESULT+PLACE,SUM
NEXT PLACE
RETURN
REM
REM SUBTRACTION SUBROUTINE
LOAN=O
FOR PLACE=SIZE TO 0 STEP -1
DIFFERENCE= PEEK (RESULT+PLACE) - PEEK (TERM+PLACE)-LOAN

108 Education

3040 LOAN=O
3050 IF DIFFERENCE>=O THEN 3080
3060 DIFFERENCE=DIFFERENCE+TEN
3070 LOAN=!
3080 POKE RESULT+PLACE,DIFFERENCE
3090 NEXT PLACE
3100 RETURN
3990 REM
4000 REM INITIALIZE REGISTERS
4010 FOR PLACE=O TO SIZE
4020 POKE POWER+PLACE,O
4030 POKE TERM+PLACE,O
4040 IF PASS=! THEN POKE RESULT+PLACE,O
4050 NEXT PLACE
4060 POKE POWER,16/ PASS • 2
4070 IF PASS=! THEN DIVIDE=5
4080 IF PASS=2 THEN DIVIDE=239
4090 POINT=POWER: GOSUB DIV
4100 EXP=l:SIGN=3-2*PASS
4110 RETURN
4990 REM
500-0 REM COPY "POWER" INTO "TERM"
5010 FOR PLACE=O TO SIZE
5020 POKE TERM+PLACE, PEEK (POWER+PLACE)
5030 NEXT PLACE
5040 RETURN

THE VALUE OF PI TO 1000 DECIMAL PLACES:

3.14159265358979323846264338327950288419
7169399375105820974944592307816406286208
9986280348253421170679821480865132823066
4709384460955058223172535940812848111745
0284102701938521105559644622948954930381
9644288109756659334461284756482337867831
6527120190914564856692346034861045432664
8213393607260249141273724587006606315588
1748815209209628292540917153643678925903
6001133053054882046652138414695194151160
9433057270365759591953092186117381932611
7931051185480744623799627495673518857527
2489122793818301194912983367336244065664
3086021394946395224737190702179860943702
7705392171762931767523846748184676694051
3200056812714526356082778577134275778960
9173637178721468440901224953430146549585
3710507922796892589235420199561121290219
6086403441815981362977477130996051870721
1349999998372978049951059731732816096318
5950244594553469083026425223082533446850
3526193118817101000313783875288658753320
8381420617177669147303598253490428755468
7311595628638823537875937519577818577805
3217122680661300192787661119590921642019
89

Figure 1

109

Sorting Revealed
by Richard C. Vile, fr.

The following article presents a truly fresh approach to
understanding the basics of sorting. In addition to a
discussion of various sorting methods, programs are
presented that demonstrate the sorting algorithms in
action.

It has often been said that a picture is worth a thousand words. Sadly, this maxim
is frequently ignored by professional educators, especially when dealing with such
bone-dry subjects as mathematics and computer science. This article will present
a detailed example of the use of a simple, yet effective, visual technique for giving
insight into the basis for certain algorithms. Our approach will be to show the
algorithm in action. Our medium will be the Apple II personal computer, but any
computer which provides a memory-mapped display will do. The vehicle for the
demonstration will be one of the staples of the computer science curriculum -
the joy of pedants and the bane of poor benighted students - viz. sorting
algorithms.

Sorting Theory

Unfortunately, we must stoop to pedantry to begin with. The reader who is
already well-versed in sorting lore may skip directly to Sorting Implemented.

Sorting is such a varied and vast topic that large portions of entire books have
been devoted to it. Perhaps the best known compendium of sorting facts and
theory is to be found in Knuth's robust volume Sorting and Searching (The Art of
Computer Programming Vol. 111, Addison Wesley, 1973) . Our demonstration
will be limited to just a few of the better known sorting algorithms, although the
techniques could be applied to others as well. We shall provide programs that
allow the visualization of five different sorting algorithms: bubble sort, Shell sort,
insertion sort, selection sort, and quicksort. Of these, we shall discuss the bubble
sort and quicksort in some detail prior to the presentation of the programs. Details
of the others may be found in almost any good introductory computer science
text, as well as in most texts on data structures.

110 Education

Apart from the specific details of the algorithms used, the theory connected
with sorting deals with efficiency. When people who are "in the know" discuss
sorting, they will frequently bandy about certain terminology which they don't
bother to explain. In hopes of increasing the number of cognoscenti involved in
such discussions, we shall now attempt to lay out some of the more common
terms for you.

To simplify matters somewhat, let us assume that all of our sorting will take
place entirely in memory. Sorting methods that involve storing intermediate
stages on disk files or magnetic tape, so-called external sorts, will be beyond our
scope, although presumably not beyond our ken. The objects to be sorted will be
assumed to be numbers, either integer or floating point, stored in memory in an
array of one dimension and of a given size. The size of the array being sorted will
be a hit personality throughout the discussion, so we give it a name: N.

Number of elements to sort = N

To fully comprehend one of the definitions given later, it is necessary to
indulge in a bit of mathematics. We shall need to understand two functions. In
particular:

Log2x = base 2 logarithm of x
[x] = floor of x

Actually, we are interested in the combination of these functions as applied to the
friendly value N:

i.e. the floor of the base 2 logarithm of N. Before you run screaming to the nearest
math anxiety clinic, at least read the next few sentences of explanation.

Suppose you have a pile of N coconuts. (Why coconuts, you ask? Why not, we
reply!) Think about the following process:

1. Subdivide the pile into two piles which are as nearly equal in size as possible.

2. Take the smaller of the two piles from step 1. If it consists of one coconut,
then stop. Otherwise, repeat from step 1.

Now how many times did you do step 1? The answer is the value of (log2 NJ!
So, without worrying about picky details, the floor of the base 2 logarithm of N is
the number of times you can divide N by 2 and still retain a non-zero quotient.
Figure 1 pictures a simple case.

An alternate way of thinking about the situation involves collecting
coconuts. The procedure is as follows:

1. Begin with a single coconut.

Vile Sorting Revealed 111

Figure 1

N Starting Pile 0 Pile 1 Pile 2

!fiJ c5b 5 =====C> 00

0
2 co ==!> 0 0

1 0 STOP

Step 1 was performed 2 times. Therefore, L log2 S_J = 2

2. If doubling the number, k, of coconuts which you already have would cause
your total to exceed N coconuts (2k is greater than or equal to N), then stop.

3. Collect k more coconuts, giving you 2k, and repeat step 2 now thinking of the
new total as the value of k.

Now how many times did you execute step 3? The answer will again be (log2
NJ. Before you go on, try to convince yourself (without flying to Tahiti to collect
real coconuts) the two procedures yield the same result.

We shall return to this value, the "coconut number", later.

To talk about the efficiency of any algorithm, we need some quantities that
we can measure. For sorting algorithms, we concentrate on two: the number of
comparisons and the number of interchanges.

A comparison occurs whenever a member of the collection of numbers is
compared to something else: a value fished out of a hat, or another member of the
collection. Thus, a statement such as IF A(Il > A(I + l) THEN .. . counts as a
comparison, as well as IF A(Il > MAX THEN ...

An interchange occurs whenever a member of the collection of numbers is
moved from one place to another in the computer's memory, and possibly some
other number takes its place. The classic interchange may be described by the
sequence of three statements:

TEMP =A(I)
A(I) = A(J)
A(J) = TEMP

(assuming, of course, that I -:f J). Not all sorting algorithms use this classic form,
but there is usually an easily identified interchange step whose repetition we can
count.

112 Education

Trying to count the number of comparisons and/ or interchanges which take
place during the course of execution of a sorting algorithm will give an approach to
measuring the efficiency of that algorithm. In addition to comparisons and inter­
changes, there will also be overhead involved in a sorting algorithm: i.e. the com­
puting time used in loop control, recursion, etc. This is more difficult to measure
theoretically and is therefore usually deduced from empirical observations.

Being armed with a few terminological weapons, we may now attack some of
the more familiar sorting buzz phrases. Assume we are speaking of the number of
comparisons made during the execution of some sorting algorithm. Then we may
speak of an N2 sorting algorithm (pronounced N-squared). This means that "on
the order of'' N times N comparisons will be made in the course of sorting an array
of size N. Well, that was relatively painless - at least as a definition! The in­
teresting (painful) part comes when we try to prove that a given algorithm is an N2
algorithm. We shall get to that in the next section.

Another phrase which is frequently encountered when casually "talking sorts"
is: that's an N log N sort (pronounced N log N!). What that actually means is that
the expected number of comparisons in carrying out the sorting algorithm for an
array of size N is:

That is, N multiplied by the coconut number. Again, this is easy enough to say,
but perhaps a bit harder to appreciate than the N2 description. After all, why
should we be concerned with these numbers, and what is the significance of the
difference between them?

Consider briefly, table 1. It shows values for N, N2, [log2 N], and N* [log2
NJ. Assuming that overhead is relatively constant, or at least negligible from one
al~orithm to the next, we see that there is an ever increasing difference between
N and NlogN (from now on, we assume that logN means [log2 NJ). To make the
comparison more concrete, let us assume that a comparison costs .001 e, and that
we need to sort an array containing 1,048,576 numbers. Using an N2 sort will
cost $10,995,116.27, whereas using an NlogN sort will only put us out $209.72.
Of course, a single comparison of two numbers on today's monster computers-or
"big iron" as they are sometimes referred to in the trade- costs considerably less
than .OOP. But even at .OOOOOOP per comparison-a rate of 10,000,000 com­
parisons ~er penny-the cost differential will be 2e for the NlogN sort-$1,099.51
for the N sort! With that kind of comparison, you can see why no commercially
viable sorting package is going to use the N2 sorting approach.

Some Sorting Algorithms

We now present two of the more well known sorting algorithms in some
detail. We will attempt informally to prove that the first is an N2 algorithm. The
second algorithm discussed is an example of an NlogN algorithm, but we shall
spare the reader any attempts at proof.

Vile Sorting Revealed 113

N
I I

N2 I log N I N log N

64 4096 6 384
128 16,384 7 896
256 65,536 8 2,048
512 262,144 9 4 , 608

1,024 1,048,576 10 10,240
2,048 4,194,304 11 22,528
4,096 16,777,216 12 49,152
8,192 67,108,864 13 106,496

16,384 268,435,456 14 229,376
32,768 1,073,741,824 15 491,520
65,536 4,294,967,296 16 I l,048,576

131,072 17,179,869,184 17 2,228,224
262,144 68,719,476,736 18 4,718,5:}2
524,288 274,877,906,944 19 9,961,472

1,048,576 1,099,511,626,776 20 I 20,971,520

Table 1

Bubble Sort

This algorithm is probably the most widely known and loathed by students of
introductory computer science. Many an instructor has droned on about its prop­
erties to unwilling students of FORTRAN! For many of these students, it is their
only taste of the vast menu of sorting techiniques.

We assume that N elements, which we shall denote by A(l), A(2), ... , A(N),
are to be arranged in ascending order; in short, sorted. The bubble sort operates by
making repeated "sweeps" through the array, causing various elements to "bub­
ble - up" in the process. We shall see that for each sweep, at least one element is
guaranteed to be positioned in its correct final slot in the array.

The heart of each sweep is the idea of comparing two adjacent entries in the
array:

A(I) A(I + 1)

If A (I) has a greater value than A(I + 1), then the two elements are known to be out
of correct order and need to be swapped. This is accomplished by the use of the
classic interchange, which we illustrate here in BASIC and Pascal in figure 2.

Now consider the iterations of this fundamental step which are necessary to
bring the entire array into sorted order. First, suppose we are just beginning. Then
we can make no assumptions about the sizes of the array elements, relative to
their positions in the array. Thus, suppose we iterate the fundamental compare­
maybe-swap step over values of I ranging from 1 to N-1 (why not 1 to N?). That is,
we will successively compare A(l) and A(2),A(2) and A(3), and so on, until we
reach A (N-1) and A(N). Positions of various elements will change through swap­
ping. In particular, the largest numerical value in the original array is guaranteed
to wind up in A(N) after the sweep is completed. To convince yourself that this is
true, ask: "If the largest value is originally in A(J), then what other array entries
will it be swapped with?"

114 Education

BASIC

100 IF A{I) <= A{I+l) THEN 140
110 TEMP = A(I)
120 A(I) = A(I+l)
130 A(I+l) = TEMP
140

Pascal

if A [I] > A [I+l] then
begin

Temp:= A[I];
A[I] := A[I+l]
A[I+l] := Temp;

end;

Figure 2: The "Classic Interchange"

The last paragraph has indicated that we can reach a picture such as that
shown in figure 3, after one sweep of the array. What has been accomplished? We
have partially sorted the original array. How much of the resulting array is now in
correct order? One element - the last. Note that this is the same as the number of
sweeps we have made. Now suppose we make a second sweep through the array,
comparing A(l) and A(2), A(2) and A(3), etc. until we reach A(N- 2) and A(N-1). It
is not necessary to compare A(N-1) and A(N), since we know that A(N) is already
in its correct final position. Moreover, A(N-1) is now also guaranteed to be the
second largest element in the array, and therefore in its correct final position.
Thus the original array has been divided into two pieces: the elements A(l), A(2),
... A(N-2), still possibly unsorted, and the elements A(N-1) and A(N), both where
they 'should be'. We have made two passes and put two elements in their correct
positions.

1 2 3

May still need
further sorting.

N

Largest numerical value
of original array.

Figure 3: Array after sweep of Bubble sort

Vile Sorting Revealed 115

Continuing this process by making passes through less and less of the array
will cause more and more of the 'tail end' of the array to be in correct final order
and leave less and less of the beginning of the array to still be sorted. Altogether it
will take N-1 passes through the array to guarantee that it is totally sorted. The
reason that it does not require N passes is that the last pass causes two elements to
wind up in their correct places, instead of just one. Figure 4 gives both a BASIC
and a Pascal version of the complete bubble sort algorithm.

BASIC

10 FOR I = 1 TO N-1
20 FOR J = 1 TO N- I
30 IF A(J) <= A(J+l) THEN 70
40 TEMP = A(J)
50 A(J) = A(J+l)
60 A(J+l) = TEMP
70 NEXT J
80 NEXT I

Pascal
for I : = 1 to N-1 do

for J := 1 to N-I do
if A[J] > A[J+l] then
begin

Temp:= A[J];
A[J] := A[J+l];
A[J+l] := A[J];

end;
Figure 4: Bubble sort algorithm In both BASIC and Pascal

Now let us see if we can count the number of comparisons that will be made.
Each sweep through the array corresponds to one pass through the inner loop of
the algorithm. The number of comparisons made will be the same as the value of
the upper limit of this loop, which according to figure 4 is N-1. The value of I is
varied by the outer loop and runs from 1 to N-1. Thus, there will be:

N-1 comparisons the first time through the loop.
N-2 comparisons the second time through the loop.
N-3 comparisons the third time through the loop.

N-(N-2) = 2 comparisons the (N-2.)nd time through the loop
N-(N-1) = 1 comparisons the (N-l)st time through the loop.

The total number is therefore:

(N-1) + (N-2) + ... + 3 + 2 + 1

This number is known in mathematics as a 'triangular' number, and by a formula
from algebra may be expressed solely in terms of N as 1 /2 (N2 - N). Consequently,
there are about N2 comparisons made.

116 Education

The inefficiency of the bubble sort is compensated for by its simplicity,
especially from a pedagogical point of view. It is totally trivial to program, as we
have seen. Consequently, it is quite acceptable for sorting tasks that only involve
'small' values of N.

Quicksort

Quicksort, invented by C.A.R. Hoare, is probably the most 'elegant' of the
sorting techniques yet devised. It is an NlogN sort, which is based on a very sim­
ple idea and in its most compact form may be programmed in very few lines of
code. In fact, probably the greatest difficulty in grasping how it works involves
understanding the administrative details of how to apply the basic step which
motivates its operation. One has the tendency to say, 'You mean, that's all there
is to it?', or 'But what do you mean by simply apply the same procedure to both
halves?'. Nonetheless, once appreciated, it is an algorithm you will never forget.
That should be reward enough for the effort expended in understanding it in the
first place.

The basic idea underlying Quicksort is to perform inter-changes of non­
adjacent array elements in hopes of bringing order to the array more quickly (bub­
ble sort has already demonstrated the inefficiency of interchanging adjacent
entries) . The idea is applied using the concept of a partition of the array elements.

To partition the elements A(P), A(P+ 1), ... , A(Q) of the array A, where P:::?:
1, P :s Q, Q ~ N, requires that some value X which actually occurs as one of the

entries A(P), A(P + 1), ... , A(Q) be placed into its correct final position, say K, and
that the remaining elements are arranged so that A(I) :s A(K) for I < K and A(J) =::
A(K) for J > K. The results are pictured in figure 5.

For convenience in implementation (although this may not be the optimal
choice in theory), we shall always choose A(P) as the value X, which is to be in­
serted into its correct final resting place. To accomplish our end result, we adopt
the following 'double-barreled' scan.

Start with I= P + 1 and J = Q. Scan forward from I (i.e. in increasing I-value
order) until we find A(I) for which A(I) :::?: X. Scan backward from J (i.e. in decreas­
ing J-value order) until we find A(J) for which A(J) :s X. Then interchange A(I) and
A(J), since they are both in the 'wrong half' of the partition according to the above

A:

p P +l

A(I) s A (K)

K Q
1..--.,,------J

A (J) ~ A(K)

Figure 5: Partitioning A(P)·A(Q)

Vile Sorting Revealed 117

definition. Continue this procedure until J :s I. As a final act, interchange A(P)
and A(I) , where I now has its 'final' value. This puts X =A(P) into its correct final
position in the array. You should convince yourself that it also achieves the pic­
ture shown in figure 5. Actually, there is one case which fails. See if you can
discern what it is - we'll come back to it later on.

An example may make things a bit clearer. Figure 6 shows an unsorted array
of 16 elements, which is to be partitioned for P = 1, Q = 16. Shown are the first
values of I and J for which an interchange of the partitioning process will take
place. See if you can draw the final picture showing the array with the partition
complete and the value of K. The answer is shown in figure 7.

BEFORE FIRST INTERCHANGE

P=l A(P) =10 N=l6

5 I 21 I
I ~A(P) I sA(P) I

1=4 J = 12

AFTER FIRST INTERCHANGE

l.10 I 9 I 1 I : I 5 I 21 I 7 I 20 I 2s I 31 I 4 I 1; I 11 I 2s I 29 J so I
I s A(l)] • • I ~ A(l) I

Figure 6: Partition of A: P = 1

1 I 9 I 1 9 s I 4 I 10 f 20 I 2s (31 j 21 (13 j n) 2s j 29] so I
•

Subarrays
LEFT

J = 7

Subarrays
RIGHT

Figure 7: Partition step complete A(7} In correct position.

118 Education

When one gets down to programming the partitioning process, several details
that may not have been previously obvious suddenly force themselves into the
spotlight. To highlight these, we present in figure 8 a Pascal procedure for the par­
tition step. The first item which may catch your eye is that array A is indicated in
the parameter list to be of size N + 1, instead of N. The reason may be seen by
studying the second repeat statement of figure 8:

repeat
I:=I+l
until A(I) 2!: Value;

procedure

Partition(

var A: array[l •. N+l] of integer;
Lower, Upper: integer;

var J: integer) ;

var

Value,Temp: integer;

begin

if Lower < Upper then begin

I := Lower; {Lower bound in A for partition step}
J := Upper; {Upper bound in A for partition step}
Value := A(Lower); {Comparison value for partitioning}

while I < J do begin {Partitioning loop}

repeat {Find element in right half to switch}
J : "' J-1

until A(J) <= Value;

repeat {Find element in left half to switch}
I := I+l

until A(I) >= Value;

if I <= J then begin

Temp := A(J);
A(J) := A (I) ;
A(I) := Temp

end {of if I <= J}

end {of while I < J}

A(Lower) := A(J);
A(J) := Value;

{Perform the switch}

{Insert A(Lower) into its }
{correct final position in A}

end {of if Lower < Upper}

end {of Procedure Partition};

Figure 8

Vile Sorting Revealed 119

As with all loops, the programmer should be sure that there is a way out! In this
case; if the elements A(l), A(2), ... , A(N) of the array are assumed to be randomly
distributed among all possible values, then there is no guarantee that any of them
satisfies the condition A(I) <'!:: Value. Thus, we have extended the array and stored
a value in A(N + 1) which is guaranteed to be greater than or equal to any other
value that could occur in the original array. In Pascal, the predefined identifier
Maxint serves the purpose, and we may assume that the assignment A(N + l) : =
Maxint; has occurred in the calling routine. Now, even if all elements of A are
strictly less than A(1), the repeat loop will terminate when it bumps into the Max­
int value stored in A(N + l) . Such a value, which is not part of the data being
manipulated, but instead serves to protect against some dire circumstances, is
known as a sentinel.

This approach raises two further questions: first, do we face a similar problem
with J; and second, do we face the possibility of erroneously swapping A(N + 1)
with some element of A? The first question is easily answered by realizing that
Value : = A [Lower). Thus, if J is decreased so far that J : = Lower, then A[J) :S

Value is automatically true. Thus, the first repeat loop is guaranteed to stop
because of this choice. To answer the second question, let's look closely at what
happens when N = Upper and A(I) < Value for all I, I = 2,3, ... ,N. The repeat
statement:

repeat
J : =J-1
until A[JJ s Value

immediately succeeds. J starts at N + 1, J-1 = N and A(N) < Value by our
assumption. Thus, J stops at the value N after the first time through the loop. On
the other hand, the repeat statement for I will continue to fail, again by our
assumption, until I = N + l. Now I + N + 1 and J = N. This means that the test I
< J will fail. Therefore, the interchange shown inside the while loop will be skip­
ped. Aha! , you say--.. caught you - nothing happens and Quicksort is a shame!
Fortunately, that is not true. The last two statements in the procedure:

A(Lower) : =A[J);
A[J) : = Value;

will be carried out, causing A(Lower] and A(N) to be swapped.

To assimilate the code of the procedure, simulate its action on the array of
figure 6. As a final note, the procedure protects itself from funny initial values for
Lower and Upper, by first checking to make sure that Lower< Upper. This will
tum out to be necessary in one version (the recursive one) of the complete
Quicksort algorithm, but must be moved back to the caller for the other version
(the 'straight' or iterative one).

Now that we have studied the innards of the Quicksort algorithm, it is time
to investigate how the partition step fits into the larger scheme of things. Once the
original array A has been partitioned, we are left with one element in its correct
final resting place and two subarrays that remain to be sorted. The beauty of

120 Education

Quicksort is its simplicity. Once the two subarrays are both sorted, the entire
array is automatically sorted. This is true because of the condition - guaranteed
by the partition step - that all elements in the first half of the array are less than
or equal to all the elements in the second half of the array. Not convinced? Think
about it! Or, consider the following analogy: a school teacher wishes to arrange
test papers in alphabetical order. The papers are divided into two piles (partition­
ing step) with all papers in the left-hand pile belonging to students whose names
begin with letters A to M, and all papers in the right-hand pile belonging to
students with names beginning with letters N to Z. Now, if the left-hand pile is
arranged (by whatever method) into alphabetical order and likewise the right-hand
pile, then all that remains to put the whole collection into alphabetical order is to
place the left-hand pile on top of the right-hand pile.

To continue the Quicksort algorithm, one applies the basic step to both
subarrays obtained from the first partitioning step. That will produce in each case
two new subarrays (or better, sub-subarrays), to which the partitioning process is
applied in tum. Since we started with a finite number of elements in array A,
sooner or later this will produce sub-sub ... subarrays with 0 elements. Such sub­
arrays are sorted by default. Thus, they need not be partitioned any further.
Morever, when both subarrays of a given subarray reach this state, they form
together with their partition element a sorted subarray, which may then be
ignored while the remaining unsorted subarrays are processed. Eventually, the
original two subarrays will have been sorted and voila!, A will have been sorted.
Figure 9 shows the implementation of this scheme as a Pascal procedure that must
be invoked from outside itself with initial values for Lower and Upper, which are
presumably 1 and N in most cases. Once it gets going, it calls itself on behalf of
the subarrays, and the sub-subarrays, etc., until it completely sorts A. Figure 10
shows the progress of the sort as applied to a small array, with N = 8. Study it
carefully. Figure 11 presents the calling structure to Sort for the array in figure 10.
The root of the tree represents the original call to Sort from outside. The interior
nodes of the tree represent calls to Sort from within itself. Each node is labeled
with the values of Lower and Upper which were passed on the corresponding call.

procedure

Sort(

var A: array[l .• N+l] of integer;
Lower,Upper: integer);

var

J: integer;

begin

Partition(A,Lower , Upper,J);

Sort(A,Lower,J-1);
Sort(A,J+l,Upper);

end {of Procedure Sort};

Figure 9

{Partition A between
{A(Lower) and A(Upper)
{Sort the "left" subarray
{Sort the "right" subarray

10

10

5

9

9

9

l 13

l

l

7

A

5 21 7 20

5 21 13 20

5 9 l

5 l 9

l fI] 9

l m 9

1 110 I 21 13 20

7 1101 21 13 20

7 t!Q] 21 13 20

1 110 I 21 13 20

7 [§] 21 13 20

7 [2J 21 13 20 ITJ[I)9
mm
mm
m rn
III ITJ
mm
ITJ IT]

9

7

7 [§] 21

~ [Q:I 21

7 rn lfQJ 21

ITJ m rm 21

ITJ m llli 21

[f] ill [QJ

13

13

13

13

13

20

20

20

20

20

m rn m m lfQJ

20 13 [ill
20 13 @II
13 §:] [EJ rn rn

m CTI
[TI [fil

ill [}]

mm !!:£J
m m [£] 13 E2J fill
m m lITI [fl ~ lill
ITJ 0 lITl !IT} ~ @]

Vile Sorting Revealed 121

Call

Partition(A,l,8);

Partition(A,l,4);

Partition(A,l,l);

Partition(A,3,4);

Partition(A,3,3);

Partition(A,5,4);

Partition(A,6,8);

Partition(A,6,7);

Partition(A,6,6);

Partition(A,8,7);

Partition(A,9,8);

Figure 10: Complete trace of Qulcksort for N = 8. Boxed entries are known to
be in the correct slot.

The leaves of the tree represent calls to Sort in which the passed values of Lower
and Upper correspond to subarrays with 0 elements. Such subarrays are already
sorted and "nothing " will happen on these calls.

EXERCISE: Determine whether or not the Partition procedure may be modified to
return whenever the passed array has either 0 or 1 elements. If so, make the
necessary changes to the code.

The recursive implementation of Quicksort is without a doubt one of the
most "beautiful" algorithms yet devised in any branch of computer science.
Unfortunately, the performance of Quicksort in such an implementation, even
though superior to most N2 algorithms, is still not quite as good as it could be.

122 Education

3,3 5,4 6,6 8,7

Figure 11: Call tree for figure 10. Each node Is labelled with the values of
Lower, Upper for the corresponding call. The levels of the tree correspond to

. the depth of the recursion.

We shall not attempt to explain the technical reasons for this, other than to say
that recursion involves more than a modicum of overhead. However, we shall
attempt to formulate the algorithm in a non-recursive or iterative fashion for
comparison.

Now look back at the recursive implementation of Quicksort shown in figure
9. Since Sort calls itself, this means that the variable J, which is used locally
within Sort, must be given a different ''incarnation'' on each call. Otherwise, the
recursive calls would cause its former value to be lost, which in turn would. mean
that the procedure would get mixed up about where the subarrays began and
ended. In languages, such as Pascal, which support recursive procedures, the
uniqueness of Jon each call is guaranteed. In a language like BASIC, there aren't
even procedures, let alone recursive ones! Thus, in such a language, we must
"fake it" iri some way or another.

What is it about the variable J that's so important? It remembers the dividing
point between the two subarrays determined by any partition step. This enables
the two halves to be sorted separately by sucessive calls to Sort. Another way to
approach matters would be to save information about subarrays that still need
sorting and retrieve it as necessary. An appropriate data structure for preserving

Vile Sorting Revealed 123

such information is a stack. The Lower and Upper values for one ''half'' of a parti­
tion may be saved by pushing them onto the stack, while the other "half" is being
sorted. When the other half has been completely sorted, the Lower and Upper
values for the saved half may be popped off the stack and the sorting of that half
commenced. Of course, while sorting a given half, new pairs of bounds for smaller
subarrays will be determined and bounds for one subarray of each such pair will in
turn be pushed onto the stack. If a point is reached at which we try to pop the
bounds of a subarray from the stack, and find that the stack is empty, then we will
know that the original array is completely sorted. As a performance enhancement,
we shall always sort the smalier o(any given pair of subarrays first. This is in
distinction to the algorithm of figure 9, which always sorts the left subarray first.
Sorting the smaller subarray first will cause a minimum number of entries to be
saved on the stack.

The actual code of an iterative implementation of the Quicksort algorithm is
presented in Listing 5, using Apple Integer BASIC.

Sorting Implemented

The Apple II Integer BASIC programs of Listings 1-5 provide implementations
of visual sorts for the following five methods: Bubble sort, straight insertion sort,
selection sort, Shell sort, and Quicksort. The visual display arranges the array to
be sorted as a table of up to 100 positive two digit integers - the user may request
fewer if so desired to speed up the completion of the algorithm. The basic table
uses the random number generator for INTEGER BASIC. For skeptical viewers,
the values 0 to N may be generated in a permuted order and filled into the first
N + 1 slots of the tableau. The modification needed in order to accomplish this is
shown in figure 12. Figure 13 shows a typical tableau, this one prior to the begin­
ning of Shellsort. Notice that extra information is displayed in the small area sur­
rounding the display. By studying the listing and carefolly monitoring this infor­
mation, extra insight into the nature of the algorithms may be gained.

80 FOR I = 0 to N: A(1) = :NEXT I
90 FOR I = 0 to N

100 L = AND (N + L): IF A(L) =O THEN 100
105 A(L) = I: X= L: GOSUB DISPLAY
110 NEXT I

Figure 12: Modification to Display generation: will seed the Initial array with
exactly the numbers 0 to N In some permuted order.

All values generated are positive and less than 100. This is done because of
horizontal space constraints in the display and does not reflect any inherent
limitations in the algorithms themselves.

The programs each carry out one of the sorting algorithms. As the array is
sorted, the values displayed on the screen are modified to reflect the changes
taking place internally. Various devices are used to highlight this: some visual and
some aural. The audio effects are programmed using the Programmer's Aid ROM.
Thus, you may have to remove or modify certain statements to run the programs
if you don't own PA.

124 Education

0 1 2 3 4 5 6 7 8 9

O! 12 72 14 68 54 23 32 3 56 24
l! 44 26 41 0 87 67 8 81 39 39
2! 3 26 60 64 35 20 39 78 65 26
3! 16 17 99 69 81 88 65 32 5 68
4! 37 44 32 89 65 37 20 38 84 77
5!
6!
7!
8!
9!

SHELL SORT J= 10
SPAN= 10 A(JJ =44

Figure 13: Just before the start of the shell sort. Fifty elements are being
sorted.

Each time a number is moved from one place to another in the array, that
value is highlighted in the display. This is accomplished by momentarily display­
ing the value in reverse video, then switching back to normal mode. If your Apple
has been modified for lower case, this probably won't work. You can get a good
idea of how each algorithm does its job just by watching the pattern of flashes on
the screen.* In addition to this, as mentioned above, each sort prints on the border
of the display some additional imformation about what is happening. Each pro­
gram begins with a prologue giving the name of the sort and prompting the user for
the number of elements to be sorted. The value of PDL{l) is used by the programs
to control the speed at which the display is generated. Thus to slow down the pro­
gress of the program, simply turn up the PDL(l) control.

While each algorithm is in progress, two tones will be sounded periodically.
One tone is generated each time an array element is copied from one place to
another, that is; for each interchange. A different tone is sounded whenever an
array element is compared to another or to a fixed value, that is, for each
comparison. Listening to the pattern of sounds thus produced gives a very definite
auditory tattoo to each algorithm. The calls to Programmer's Aid which produce
these tones are localized in subroutines to facilitate their removal or replacement
should you not have the PA ROM. For example, in the bubble sort demo, you may
defeat the sounds by inserting the two statements:

901 RETURN
951 RETURN

Vile Sorting Revealed 125

Even if you do have PA, you may want to use these statements in order to (a) speed
up the program a little or (b) hear only comparisons or only interchanges.

*NOTE: If you stop the program with a Control-C at just the right (or wrong­
depending on your point of view) moment, you may find that everything is being
displayed in reverse video. To return to normal display mode, simply type:

POKE 50,255

and all should be well.

126 Education

10
12
14
16
18
20
22
24
25
26
27
28

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

* *
* SORTING REVEALED *
* RICHARD C. VILE, JR. *
* *
* BUBBLE *
* *
* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
* *

29 REM ************************
30 REM
40 TEXT : CALL -936
41 DIM A(lOO)
42 KBD=-16384:CLR=-16368:TITLE=500:INTRO=l000
44 DISPLAY=600:WAIT=800:COMPARE=900:INTERCHANGE=950
46 MUSIC=l0473:TIME=766:TIMBRE=765:PITCH=767
48 GOSUB INTRO
50 GOSUB TITLE
90 FOR R=O TO 100:A(R)=32767: NEXT R

100 FOR I=O TO N
105 A(I)= RND (lOO):X=I: GOSUB DISPLAY
108 IF N=O THEN 150
110 NEXT I
150 FOR I=l TO NUM-1
152 FLAG=O
155 FOR J=O TO N-I
158 FOR T=O TO POL (1): NEXT T
159 GOSUB COMPARE
160 IF A(J)<=A(J+l) THEN 200
163 X=lOO: POKE 50,127:A(lOO)=A(J): GOSUB DISPLAY
165 KEEP=A(J) : GOSUB INTERCHANGE:X=J
170 POKE 50,63
173 A(J)=A(J+l): GOSUB DISPLAY: GOSUB INTERCHANGE: POKE 50,255
175 GOSUB DISPLAY:X=J+l: POKE 50,63
180 A(J+l)=KEEP: GOSUB DISPLAY: GOSUB INTERCHANGE: POKE 50,255
185 GOSUB DISPLAY
190 FLAG=l
195 KEY= PEEK (KBD): IF KEY<l28 THEN 200
196 POKE CLR,O: GOSUB WAIT
200 NEXT J
202 IF FLAG=O THEN 208
205 NEXT I
208 VTAB 24: TAB 21: PRINT "FINISHED";
210 IF PEEK (KBD)<l28 THEN 210
220 POKE CLR,O: CALL -936: GOTO 48
500 TEXT : CALL -936
510 VTAB l: FOR I=O TO 9: TAB 7+3*I: PRINT I : NEXT
515 VTAB 2: TAB 7: FOR I=O TO 9: PRINT •---" : NEXT
520 FOR J=O TO 9: VTAB 3+2*J: TAB 4: PRINT J "! ";: NEXT J
525 VTAB 23: TAB 1: PRINT "TEMP=";: TAB 20
528 PRINT "BUBBLE SORT"
530 RETURN
600 COL=X MOD 10
610 ROW=X/10
620 VTAB 2*ROW+3: TAB 7+3*COL
630 IF A(X)<lO THEN PRINT " ";
635 PRINT A(X);
640 RETURN
800 IF KEY<> ASC("Q") THEN 810
805 TEXT : CALL -936: END
810 VTAB 2*ROW+3: TAB 6+3*COL: PRINT">";
815 KEY= PEEK (KBD): IF KEY<l28 THEN 810
817 VTAB 2*ROW+3: TAB 6+3*COL: PRINT " ";
820 POKE CLR,O: RETURN
900 REM *** TO REMOVE SOUND, 901 IS ADDED ***
901 RETURN
902 POKE PITCH,10: POKE TIME,5: CALL MUSIC

905 FOR DE=l TO PDL (1): NEXT DE
910 RETURN

Vile Sorting Revealed

950 REM *** TO REMOVE INTERCHANGE SOUNDS, ADD 951 ***
951 RETURN
952 POKE PITCH,49: POKE TIME,3: CALL MUSIC
955 FOR DE=l TO PDL (1): NEXT DE
960 RETURN

1000 VTAB 10: TAB 5: ·PRINT "I WILL SORT UP TO 100 POSITIVE"
1001 TAB 5: PRINT "INTEGERS INTO ASCENDING"
1002 TAB 5: PRINT "ORDER USING THE BUBBLE SORT."
1008 VTAB 15: TAB 10: INPUT "VALUE OF N, PLEASE",NUM:N=NUM-1
1009 IF NUM<=O THEN 805
1010 IF NUM<=lOO THEN RETURN
1015 TAB 10
1020 PRINT "TOO BIG!!!!": GOTO 1000

0 I=J=Y=N
10 REM ************************
12 REM * *

REM * SORTING REVEALED *
REM * RICHARD C. VILE, JR. *
REM * *
REM * INSERT *
REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
REM * *

14
16
18
20
22
24
25
26
27
28
29
30

REM ************************
REM

40 TEXT : CALL -936
41 DIM A(99)
42 KBD=-16384:CLR=-16368:TITLE=500:INTRO=l000
44 DISPLAY=600:WAIT=800:COMPARE=900:INTERCHANGE=950
45 MUSIC=-10473:TIME=766:TIMBRE=765:PITCH=767
46 DELAY=975:ERASE=650
48 GOSUB INTRO
50 GOSUB TITLE
90 FOR R=O TO 99:A(R)=32767: NEXT R

100 FOR I=O TO N
105 A(I)= RND (lOO):X=I: GOSUB DISPLAY
108 IF N=O THEN 150
110 NEXT I
150 FOR I=l TO N
151 IF I>N THEN 206:Y=A(I)
152 VTAB 23: TAB 32: PRINT "I=";: IF I<lO THEN PRINT" ";: PRINT I;
153 VTAB 24: TAB 32: PRINT "Y=";: IF Y<lO THEN PRINT" ";: POKE 50,127:

PRINTY;: POKE 50,255
154 GOSUB INTERCHANGE
155 FOR J=I-1 TO 0 STEP -1
156 GOSUB DELAY:KEY= PEEK (KBD): IF KEY<l28 THEN 159
158 POKE CLR,O: GOSUB WAIT
159 GOSUB COMPARE
160 IF Y>A(J) THEN 202
163 A(J+l)=A(J)
166 GOSUB INTERCHANGE
168 POKE 50,63
175 X=J: GOSUB DISPLAY: GOSUB DELAY
178 X=J+l: GOSUB DISPLAY: GOSUB DELAY
180 POKE 50,255: GOSUB DISPLAY : GOSUB DELAY
185 X=J: GOSUB ERASE
200 NEXT J
202 A(J+l)=Y
203 POKE 50,63:X=J+l: GOSUB DISPLAY
204 GOSUB INTERCHANGE
205 POKE 50,255: GOSUB DISPLAY

127

128 Education

206 NEXT I
208 VTAB 24: TAB 15: PRINT "FINISHED";
210 IF PEEK (KBD)<l28 THEN 210
220 POKE CLR,O: CALL -936: GOTO 48
500 TEXT : CALL -936
510 VTAB 1: FOR I=O TO 9: TAB 7+3*I: PRINT I : NEXT
515 VTAB 2: TAB 7: FOR I=O TO 9: PRINT •---" : NEXT I
520 FOR J=O TO 9: VTAB 3+2*J: TAB 4: PRINT J "! ";: NEXT J
525 VTAB 23: TAB 13: PRINT "INSERTION SORT"
530 RETURN
600 COL=X MOD 10
610 ROW=X/10
620 VTAB 2*ROW+3: TAB 7+3*COL
630 IF A(XJ<lO THEN PRINT " ";
635 PRINT A(X);
640 RETURN
650 COL=X MOD lO:ROW=X/10
655 VTAB 2*ROW+3: TAB 7+3*COL
660 PRINT • •;
670 RETURN
800 IF KEY<> ASC("Q") THEN 810
805 TEXT : CALL -936: END
810 KEY= PEEK (KBD): IF KEy<l28 THEN 810
820 POKE CLR,O: RETURN
900 REM ***TO REMOVE SOUNDS, 901 INSERTED***
901 RETURN
902 POKE PITCH,10: POKE TIME,5: CALL MUSIC
905 GOSUB DELAY
910 RETURN
950 REM ***TO REMOVE SOUNDS, 951 INSERTED***
951 RETURN
952 POKE PITCH,49: POKE TIME,3: CALL MUSIC
955 GOSUB DELAY
960 RETURN
975 FOR DE=l TO POL (1): NEXT DE
980 RETURN

1000 VTAB 10: TAB 5: PRINT "I WILL SORT UP TO 100"
1001 TAB 5: PRINT "INTEGERS INTO ASCENDING"
1002 TAB 5: PRINT "ORDER USING THE INSERTION SORT."
1008 VTAB 15: TAB 10: INPUT "VALUE OF N PLEASE",NUM:N=NUM-1
1010 IF N>=O THEN 1013
1012 TEXT : CALL -936: END
1013 IF NUM<=lOO THEN RETURN
1015 TAB 10
1020 PRINT "THAT'S TOO BIG!!!!!": GOTO 1000

0
10
12
14
16
18
20
22
24
25
26
27
28
29
30

I=J=Y=N
REM ************************
REM * *
REM * SORTING REVEALED *
REM * RICHARD C. VILE, JR. *
REM * *
REM * SELECT *
REM * *
REM • COPYRIGHT (C) 1981 *
REM * MICRO INK, INC.
REM * CHELMSFORD, MA 01 824 *
REM * ALL RIGHTS RESERVED *
REM * *
REM ************************
REM

40 TEXT : CALL -936
41 DIM A(99)
42 KBD=-16384:CLR=-16368:TITLE=500:INTRO=l000
44 DISPLAY=600:WAIT=800:CMP=900:INT=950
46 MUSIC=-10473:TIME=766:TIMBRE=765:PITCH=767

47 DELAY=975:ERASE=650
48 GOSUB INTRO
50 GOSUB TITLE

100 FOR I=O TO N
105 A(I)= RND (lOO):X=I: GOSUB DISPLAY
110 NEXT I
150 FOR I=O TO N-1
151 MAX=O

Vile Sorting Revealed

152 VTAB 23: TAB 32: PRINT "I=";: IF I<lO THEN PRINT" ";: PRINT I;
155 FOR J=l TO N-I
156 KEY= PEEK (KBD): IF KEY<l28 THEN 158
157 POKE CLR,O: GOSUB WAIT
158 GOSUB DELAY
159 GOSUB CMP
160 IF A(J)<=A(MAX) THEN 200
163 MAX=J
165 VTAB 24: TAB 32: PRINT "M=";: IF MAX<lO THEN PRINT" ";: PRINT MAX;

168 POKE 50,63
175 X=J: GOSUB DISPLAY
178 POKE 50,255
185 X=J: GOSUB DISPLAY
200 NEXT J
202 TEMP=A(MAX): GOSUB INT
203 A(MAX)=A(N-I):X=MAX: POKE 50,63: GOSUB DISPLAY: GOSUB INT: POKE 50,

255: GOSUB DISPLAY

129

204 A(N-I)=TEMP:X=N-I: POKE 50,63: GOSUB DISPLAY: GOSUB INT: POKE 50,255
: GOSUB DISPLAY

212 NEXT I
215 VTAB 24: TAB 15: PRINT "FINISHED";
218 IF PEEK (KBD)<l28 THEN 218
220 POKE CLR,O: CALL -936: GOTO 48
500 TEXT : CALL -936
510 VTAB 1: FOR I=O TO 9: TAB 7+3*I: PRINT I;: NEXT
515 VTAB 2: TAB 7: FOR I=O TO 9: PRINT"---";: NEXT I
520 FOR J=O TO 9: VTAB 3+2*J: TAB 4: PRINT J;"! ";: NEXT J
525 VTAB 23: TAB 13: PRINT "SELECTION SORT"
530 RETURN
600 COL=X MOD 10
610 ROW=X/10
620 VTAB 2*ROW+3: TAB 7+3*COL
630 IF A(X)<lO THEN PRINT" ";
635 PRINT A (X);
640 RETURN
800 IF KEYi ASC("Q") THEN 810
805 TEXT : CALL -936: END
810 IF PEEK (KBD)<l28 THEN 810
820 POKE CLR,0: RETURN
900 REM ***TO REMOVE SOUNDS, 901 INSERTED***
901 RETURN
902 POKE PITCH,10: POKE TIME,5: CALL MUSIC
905 GOSUB DELAY
910 RETURN
950 REM ***TO REMOVE SOUNDS, 951 INSERTED***
951 RETURN
952 POKE PITCH,49: POKE TIME,3: CALL MUSIC
955 GOSUB DELAY
960 RETURN
975 FOR DE=l TO POL (1): NEXT DE
980 RETURN

1000 VTAB 10: TAB 5: PRINT "I WILL SORT UP TO 100"
1001 TAB 5: PRINT "INTEGERS INTO ASCENDING"
1002 TAB 5: PRINT "ORDER USING THE SELECTION SORT."
1008 VTAB 15: TAB 10: INPUT "VALUE OF N PLEASE",N
1009 N=N-1
1010 IF N>=O THEN 1013
1012 TEXT : CALL -936: END
1013 IF N<=lOO THEN RETURN
1015 TAB 10
1020 PRINT "TO BIG!!!!": GOTO 1000

130 Education

10
12
14
16
18
20
22
24
25
26
27
28

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

••••••••••••••••••••••••
* *
* SORTING REVEALED *
* RICHARD C. VILE, JR. *
* *
* SHELL *
* *
* COPYRIGHT (C} 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 018 24 *
* ALL RIGHTS RESERVED *
* *

29 REM ************************
30 REM

100 DIM A(99} ,INCS(5}
105 MUSIC=-10473:PITCH=767:TIME=766:TIMBRE=765: POKE TIMBRE,32
110 KBD=-16384:CLR=-16368:TITLE=400:INTRO=l000
120 DISPLAY=500:WAIT=800:CMP=900:INT=950
125 DELAY=975:ERASE=550
130 TEXT : CALL -936
140 GOSUB INTRO
150 GOSUB TITLE
160 FOR I=O TO N
170 A(I}= RND (100}:X=I: GOSUB DISPLAY
180 NEXT I-
190 INCS(l}=l0:INCS(2}=6:INCS(3}=4:INCS(4}=2:INCS(5)=1
200 FOR I=l TO 5
210 SPAN=INCS(I}
211 IF SPAN>N THEN 370
215 VTAB 24: TAB 12: PRINT "SPAN=";
216 IF SPAN<lO THEN PRINT" ";: PRINT SPAN;
220 FOR J=SPAN TO N
230 Y=A(J}: GOSUB INT
233 VTAB 23: TAB 28: PRINT "J= "; : IF J<lO THEN PRINT" ";: PRINT J
235 TAB 26: PRINT "A(J}=";: IF A(J}<lO THEN PRINT" ";
236 POKE 50,63: PRINT A(J};: POKE 50,255
240 FOR K=J-SPAN TO 0 STEP -SPAN
245 GOSUB CMP
250 IF Y>A(K} THEN 320
260 POKE 50,63
265 GOSUB INT
270 A(K+SPAN}=A(K}
280 X=K+SPAN: GOSUB DISPLAY
285 KEY= PEEK (KBD}: IF KEY<l28 THEN 290
287 POKE CLR,O: GOSUB WAIT
290 GOSUB DELAY
300 POKE 50,255: GOSUB DISPLAY
305 X=K: GOSUB ERASE
310 NEXT K
320 POKE E50,63
325 GOSUB INT
330 A(K+SPAN}=Y:X=K+SPAN: GOSUB DISPLAY
340 GOSUB DELAY
350 POKE 50,255: GOSUB DISPLAY
360 NEXT J
370 NEXT I
380 VTAB 24: TAB 12: PRINT "FINISHED";
390 IF PEEK (KBD)<l28 THEN 390
395 POKE CLR,O: CALL -936: GOTO 140
400 TEXT : CALL -936
420 VTAB l: FOR I=O TO 9: TAB 7+3*I: PRINT I : NEXT I
430 VTAB 2: TAB 6: FOR I=O TO 9: PRINT "---• : NEXT I
440 FOR J=O TO 9: VTAB 3+2*J: TAB 4: PRINT J "! "; : NEXT J
450 VTAB 23: TAB 10: PRINT " SHELL SORT"
460 RETURN
500 COL=X MOD 10
510 ROW=X/10
520 VTAB 2*ROW+3 : TAB 7+3*COL
530 IF A(X}<lO THEN PRINT " ";
540 PRINT A(X};
549 RETURN

550 COL=X MOD lO:ROW=X/10
555 VTAB 2*ROW+3: TAB 7+3*COL
560 PRINT " ";
599 RETURN
800 IF KEY<> ASC("Q") THEN 810
805 TEXT : CALL -936: END
810 IF PEEK (KBD)<l28 THEN 810
820 POKE CLR,O: RETURN

Vile

900 REM ***TO REMOVE SOUNDS, 901 INSERTED***
901 RETURN
902 POKE PITCH,10: POKE TIME,5: CALL MUSIC
905 GOSUB DELAY
910 RETURN
950 REM ***TO REMOVE SOUNDS, 951 INSERTED***
951 RETURN
952 POKE PITCH,49: POKE TIME,3: CALL MUSIC
955 GOSUB DELAY
960 RETURN
975 FOR DE=l TO PDL (1): NEXT DE
980 RETURN

1000 VTAB 10: TAB 5: PRINT "I WILL SORT UP TO 100"
1001 TAB 5: PRINT "INTEGERS INTO ASCENDING"
1002 TAB 5: PRINT "ORDER USING THE SHELL SORT."
1008 VTAB 15: TAB 10: INPUT "VALUE OF N PLEASE",N
1009 N=N-1
1010 IF N>=O THEN 1013
1012 TEXT : CALL -936: END
1013 IF N<=lOO THEN RETURN
1015 TAB 10
1020 PRINT "THAT'S TOO BIG!!!": GOTO 1000

10 REM ************************
12 REM *
14 REM * SORTING REVEALED
16 REM * RICHARD C. VILE, JR. *
18 REM * *
20 REM * QUICK *
22 REM * *
24 REM * COPYRIGHT (C) 1981 *
25 REM * MICRO INK, INC. *
26 REM * CHELMSFORD; MA 01824 *
27 REM * ALL RIGHTS RESERVED *
28 REM * *
29 REM ************************
30 REM
32 REM
35 DIM A(200) ,STACK(24)
36 KBD=-16384:CLR=-16368:TITLE=5000:INTRO=l0000
37 DISPLAY=6000:CMP=6500:DELAY=6600
38 MUSIC=l0473:TIME=766:TIMBRE=765:PITCH=767
40 TEXT : CALL -936
42 PRINT "MICRO APPLE, VOLUME l"
44 VTAB 3: PRINT "SEE 'SORTING REVEALED'"
46 VTAB 5: PRINT "BY RICHARD C. VILE, JR."
47 IF PEEK (KBD)<>l60 THEN 47
48 GOSUB INTRO
50 GOSUB TITLE

100 FOR I=O TO N-1
105 A(I)= RND (lOO):X=I: GOSUB DISPLAY
ltt HE-XT I
115 A(N+l)=32767
120 P=O:Q=N
125 TOP=O:MAXTP=O
130 IF P>=Q THEN 170
135 K=Q+l

Sorting Revealed 131

137 VTAB 23: TAB 34: PRINT "P= ";: IF P<lOO THEN PRINT• ";: IF P<lO THEN
PRINT" ";: PRINT P

132 Education

138 TAB 34: PRINT "Q= ";: IF K<lOO THEN PRINT" ";: IF K<l O THEN PRINT
• " ; : PR INT K;

139 GOSUB 1145
140 IF J-P<Q-J THEN 150
143 GOSUB 400
144 GOTO 160
150 GOSUB 500
160 TOP=TOP+2
161 IF TOP>MAXTP THEN MAXTP=TOP
162 VTAB 24: TAB 23 : PRINT (TOP/2};
163 IF PEEK (KBD}>=l28. THEN GOSUB 8000
165 GOTO 130
170 IF TOP=O THEN 208
175 Q=STACK(TOP}:P=STACK(TOP-l):TOP=TOP-2
176 GOSUB 7500
177 VTAB 24: TAB 23: PRINT (TOP/ 2};
179 IF PEEK (KBD}>=l28 THEN GOSUB 8000
180 GOTO 130
208 VTAB 24: TAB 4: PRINT "FINISHED";
209 TAB 15 : PRINT "MAXTQP= "; (MAXTP/ 2);
210 IF PEEK (KBD)<l28 THEN 210
220 POKE CLR,O: CALL -936: GOTO 48
400 STACK(TOP+l)=P
405 STACK(TOP+2)=J-l
410 P=J+l
415 GOSUB 7000
499 RETURN
500 STACK(TOP+l)=J+l
505 STACK(TOP+2)=Q
510 Q=J-1
515 GOSUB 7000
599 RETURN

1145 V=A(P):I=P:J=K
1160 J=J-1: IF A(J}<=V THEN 1170
1162 GOSUB DELAY
1165 GOSUB CMP: GOTO 1160
1170 I=I+l: IF A(I)>=V THEN 1180
1172 GOSUB DELAY
1175 GOSUB CMP: GOTO 1170
1180 IF J<=I THEN 1200
1185 TEMP=A(I)
1186 A(I}=A(J}:X=I: GOSUB DISPLAY
1188 A(J)=TEMP:X=J: GOSUB DISPLAY
1195 IF PEEK (KBD)<l28 THEN 1160
1196 GOSUB 8000
1199 GOTO 1160
1200 A(P)=A(J):X=P: GOSUB DISPLAY
1202 A(J)=V:X=J: GOSUB DISPLAY
1999 RETURN
5000 TEXT : CALL -936
5010 VTAB 1: FOR I=O TO 9: TAB 7+3*I: PRINT I;: NEXT I
5020 VTAB 2: TAB 7: FOR I=O TO 9: PRINT"---•;: NEXT I
5030 FOR J=O TO 19: VTAB 3+J: TAB 3
5040 VTAB 23: TAB 3: PRINT "QUCKSORT PARTITION=======>"
5045 VTAB 24: TAB 15: PRINT "PENOING:O";
5050 VTAB 5 : TAB 39: PRINT "S": TAB 39: PRINT "T": TAB 39: PRINT "A": TAB

39: PRINT "C": TAB 39: PRINT "K"
5060 FOR R=lO TO 22: TAB 39 : PRINT".": NEXT R
5099 RETURN
6000 COL=X MOD 10
6010 ROW=X/10
6020 POKE 50,63
6030 VTAB ROW+3: TAB 7+3*COL
6040 IF A(X} <lO THEN PRINT" ";
6050 PRINT A(X);
6060 POKE 50,255
6070 VTAB ROW+3: TAB 7+3*COL
6080 IF A(X)<lO THEN PRINT" ";
6090 PRINT A (X};
6100 REM ***TO REMOVE INT SOUND, 6101 INSERTED***
6101 RETURN
6110 POKE PITCH,49: POKE TIME,3: CALL MUSIC
6199 RETURN
6500 REM ***TO REMOVE COMP. SOUNDS, 6501 INSERTED***
6501 RETURN

6510 POKE PITCH,10: POKE TIME,5: CALL MUSIC
6599 RETURN
6600 FOR DE=O TO PDL (1): NEXT DE
6699 RETURN
7000 VTAB 21-TOP: TAB 37
7005 TOS=STACK(TOP+l) :NOS=STACK(TOP+2)

Vile Sorting Revealed 133

7010 IF NOS<lOO THEN PRINT• ";: IF NOS<lO THEN PRINT" ";: PRINT NOS
7015 TAB 37: IF TOS<lOO THEN PRINT" ";: IF TOS<lO THEN PRINT" ";: PRINT

TOS;
7499 RETURN
7500 VTAB 21-TOP: TAB 37: PRINT" ": TAB 37: PRINT" ";
7999 RETURN
8000 POKE CLR,O
8005 IF PEEK (KBD)<l28 THEN 8005
8010 POKE CLR,O
8099 RETURN

10000 VTAB 10: TAB 5: PRINT "I WILL SORT UP TO 100 POSITIVE"
10010 TAB 5: PRINT "INTEGERS INTO ASCENDING"
10020 TAB 5: PRINT "ORDER USING HOARE'S QUICKSORT."
10030 VTAB 15: TAB 10: INPUT "VALUE OF N PLEASE",N
10040 IF N>O THEN 10060
10050 TEXT : CALL -936: END
10060 IF N<=l99 THEN RETURN
10070 TAB 10
10080 PRINT "TOO BIG!!!!!": GOTO 10000

134 Education

Solar System Simulation
with or without an Apple II

by David A. Partyka

Astronomy is a science of observation. Through years
of observation, mathematical laws have been derived to
explain certain phenomena, like the motion of the
planets around the sun. Now, using your Apple and the
program and information provided here, you can explore
the inner solar system using Hi-Res graphics; don't let
Kepler's laws go to waste-be an indoor astronomer!

There are unlimited applications for a micro with high resolution graphics. Some
of the more fascinating aspects are the simulation of objects around us. This
article and program deals with the simulated motion of the first six planets of our
solar system.

Each planet moves in an elliptical orbit of varying distance from the sun. The
closer the orbit to the sun, the less time it takes that planet to complete its orbit.
Mercury, the closest planet takes 88 days, while Saturn the farthest of the first six
takes 29 years. Because the planets move in elliptical orbits, their distance from
the sun and orbital speed is constantly changing. Using Johann Kepler's
(1571-1630) second law of planetary motion, "The line joining the planet to the
sun sweeps out equal areas in equal time," we can calculate the time it takes the
planet to travel from point W to point R (figure 1). As you can see, the line RV join­
ing the sun S to the planet R will vary in length as the planet travels around its or­
bit. Being at its minimum distance at W, the planet must travel faster for the line
RV to sweep an equal area as when the planet is at its maximum distance Z.

To calculate the area SWR (figure 1) we use the formula

1.) Area = ab (H-e sin H).
2

Variable a being the length of the major axis, b the length of the minor axis, e the
eccentricity of the ellipse (cla) and H (figure 2), the angle in RADIANS from the
center of the ellipse to point q; point q being on a circle of radius a, intercepted by
a perpendicular line from the major axis going through point R to the circle.

Partyka Solar System 135

By using Equation { 1), we can calculate the number of days it takes the planet
to travel any degree of angle from the area. By dividing the total area of the ellipse,
{total area=pi ab), by the number of days to complete the orbit we have the area
swept out per day. Rearranging equation (1) , we get

2) . H-e sin H = area• 2

ab
and a problem. The term H-e sin H can't be simplified for the angle H because of
the term sin H. Given the daily area we could still calculate the angle H by using a
loop routine until we got the correct answer, but this would considerably slow the
simulation down.

Instead I use the angle A (figure 1) at the other focus of the ellipse. By dividing
360 degrees by the number of days to complete the orbit we get the number of
degrees per day for angle A. Using the equation

3.) RV = 2a - {P/ 1 + e(cos{l80-A)))

we get the distance between the sun and the planet for each value of A. Using
another equation

4.) cos Vl = R - RV
RV*e

we get the angle Vl that the planet lies in relation to the sun (figure 2). The value
Pin equation (4) being a perpendicular line from the focus to the ellipse and equal
to a{l-e2) . By increasing angle A at the daily rate we get the X,Y coordinates for
each day and plot it on the screen.

y

z w
x

Figure 1

136 Education

w
x

Figure 2

Using angle A also causes a problem. Increasing angle A at a daily rate doesn't
increase the area SWR (figure 1) at a daily rate. Even though there is an error, it
isn't accumulative. The difference returns to zero at four points in the orbit, two
points being at the minimum point W and the maximum point Z. The other two
points vary with eccentricity but zero out before the 1,4 position and after the %
position of its orbit. For Mercury, the fastest planet, the error amounts to about
.65 degrees and even less for the other planets. One more equation,

5). cos H = a-RV
ae

is a link between equation (1) and equation (3) and can be used to calculate the
error of using angle A.

Now that the calculations are out of the way, let me describe this program. To
keep the program small I chose only the first six planets. If you want to add the
other three planets it can be done with little trouble (see listing 1). The planets are
plotted in order from the sun, Mercury, Venus, Earth, Mars, Jupiter, then Saturn.
You can choose any combination of planets to display, from one to all six. The
planets are assigned scaling factors so their orbits will use the full plotting area
when selected planets are used.

Partyka Solar System 137

You can plot the position of the planets or planet for any day, ie July 8, 1980,
or for any length of time from when you choose, ie. 100 days starting at Oct 3,
1980. You can plot any length of time with any amount of time between plots, ie.
plot 900 days with 30 days between plots. Then you can choose whether to plot
single points, only one dot per planet, or continuous plots. Each dot remains on
the screen. Using single point plots it appears as if you are above the solar system
looking down on the planets as they orbit the sun. With continuous plots you can
see the orbit for the length of time you choose to plot with the amount of time
between plots. When doing a plot, the first plot is always the date you choose,
then it continues with what you requested. Figure 3 is an example of plotting all
the planets for Aug 11, 1980; 0 was the response for the number of days to plot
with any number for days between plots. The constellation names, planet names,
and degrees don't show on the actual display but are shown here for reference.

CANCER

150 •

LEO

GEMINI

120 •

•JUPITER

180 • •SATURN

VIRGO

210 •

LIBRA

240 •

SCORPIUS

90

•

TAURUS

.60

MERCURY

SUN• •VENUS
•EARTH

MARS

ARIES

• 30

PISCES

•• 0

AQUARIUS

• 330

CAPRICORN US

• 300

SAGITIARIUS
270

Figure 3: This Is an example of the display for all six planets for Aug. 11, 1980
(224 days from Jan. 0).

138 Education

Figure 4 is an example of plotting the planets Mercury, Venus, and Earth on
May 29,1980 for 44 days with 4 days between plots. In this example May 29 was
the first plot followed by the 11 plots for 44 days at 4 day intervals. Around the
plotting area is a circle that has plots at 10 degree intervals with a double plot at
the zero point. Use this to get the longitude of degrees that the planet lies in rela­
tion to the sun.

This program is set up for Jan. 0,. 1980, or if you prefer, Dec. 31, 1979. To
change the reference date,, just add the number of days difference from Jan. 0, 1980
to the values W, ie. Wl, W2, W3, etc.

Some of the things you can do with this program are to determine the dates of
superior conjunction, inferior conjunction, opposition, and greatest elongation.
You can demonstrate the retrograde motion of the outer planets, whether a planet
is a morning or evening object, or when two or more planets appear close to each
other in the sky. What else you do depends on your knowledge of astronomy. The
program is simple so any additions or changes you make should be easy.

90

•MAY 29

180 • MERCURY
• SUN

•• 0

• JUNE 18

• • • •
. JULY12 •

• MAY 29 • JULY12
•

VENUS •
.•

.MAY 29 JULY 12 .
EARTH •

• • • • • • • • •

270

Figure 4: This is a display of the planets Mercury, Venus, and the
Earth. This example is for continuous plots starting May 29th (day
150), for 44 days with 4 days between plots.

Partyka Solar System 139

If you're wondering how accurate this program is, I used an almanac for 1980
that gave the dates of special events for the planets, and all 20 dates that I tried
worked. The display that I got for each date corresponded to what the almanac
said was happening. I also have a book that gives the location of the planets 22
years ago, and the display I got was accurate enough not to make changes to the
program.

Listing 1

Sidereal Distance from Sun Longitude
revolution in million miles of perhelion

in days max. min. in degrees Eccentricity

Mercury 87.969 43.403 28.597 77.1 .2056
Venus 224.701 67.726 66.813 131.3 .0068
Earth 365.256 94.555 91.445 102.6 .0167
Mars 686.980 154.936 128.471 335.7 .0934
Jupiter 4332.125 507.046 460.595 13.6 .0478
Saturn 10825.863 937.541 838.425 95.5 .0555
Uranus 30676.15 1859.748 1699.331 172.9 .0503
Neptune 59911.13 2821.686 2760.386 58.5 .0066
Pluto 90824.2 4551.386 2756.427 223.0 .2548

Listing 2

Address Old New

COl 20 40 From monitor load the Hi-Res
C65 OB 3B subroutines in the normal location, COO
C7E oc 3C to FFF. Make these changes then move
CE3 OD 3D the subroutines to 3COO by keying
DOA OD 3D 3COO COO.FFFM then RETURN.
D62 OD 3D
D6B OD 3D The value in location COl was changed
D93 OD 3D to use page 2 (4000-6000) instead of page
D9F OD 3D 1 (2000-4000 J .
DCD OE 3E
DDS OE 3E
DF6 OD 3D Old Values High-Res New Values
E02 OD 3D Dec. Hex. Commands Dec. Hex
E3D OD 3D 3072 coo INIT 15360 3COO
EBF oc 3C 3086 COE CLEAR 15374 3COE
EC6 OE 3E 3780 EC4 PLOT 16068 3EC4
EC9 oc 3C 3761 EBl POSN 16049 3EB1
EDS oc 3C 3786 ECA LINE 16074 3ECA
EFl OD 3D 3805 EDD SHAPE 16093 3EDD

140 Education

10 REM ***************************
15 REM * *
20 REM * SOLAR SYSTEM SIMULATION *
30 REM * DAVID A. PARTYKA *
35 REM
40 REM
45 REM
50 REM
55 REM
60 REM
65 REM
70 REM

*
*
*

*
*
*
*

SOLAR

COPYRIGHT (C) 1981
MICRO INK, INC.

CHELMSFORD, MA 01824
ALL RIGHTS RESERVED

*

*
*
*
*
*
*

75 REM ***************************
80 REM
85 GOTO 1000
90 REM (100-110) PLOT X AND Y VALUES
100 HPLOT X,Y
110 RETURN
150 REM (200-300) CALCULATE THE X AND YPLANET POSITIONS
200 D = Z - INT (Z / SRO) * SRO '
205 REM D IS FOR DAYS
210 B = Q - (D I SRO * 02)
220 RV = A - (P / (1 + E * COS (B)))
225 REM RV IS THE RADIUS VECTOR OR DISTANCE FROM THE SUN TO THE PLANET
230 V = PE / RV - EZ
240 IF V > 1 THEN V = VL
245 IF V < - l THEN V = - VL
250 Vl = ATN (V / SOR (- V * V + 1)) + T
255 REM Vl IS THE ANGLE THAT THE PLANET LIES FROM THE SUN. THE 0 POINT

BEING AT THE RIGHT, INCREASING COUNTERCLOCKWISE.
260 IF D < SRO / 2 THEN Vl = 02 - Vl
270 Vl = Vl + J
280 X = COS (Vl) * RV:Y = SIN (Vl) * RV * FA
290 X = X *TT+ Xl:Y = Y *TT+ Yl
300 RETURN
900 REM (1000) DISPLAY PRIMARY PAGE, SET TEXT MODE
1000 POKE - 16300,0: POKE - 16303,0
1010 T = 1.5708
1020 Q = 3.14159265
1030 Q2 = 6.2831853
1040 VL = .99999999
1050 FA = 29 I 32
1055 REM FA IS THE RATIO OF X TO Y TO PLOT A CIRCLE AN THE APPLE INSTEA

D OF AN OVAL
1060 Xl = 140:Yl = 96
1700 HOME : PRINT : PRINT : PRINT : PRINT
1800 PRINT "DO YOU WANT TO DISPLAY "
1810 PRINT PRINT "THE SAME PLANETS AS YOUR LAST RUN"
1815 PRINT INPUT "YORN ";A$
1820 PRINT PRINT
1830 IF A$ "N" THEN 2000
1840 IF A$ < > "Y" THEN 1800
1850 IF Sl < > 0 THEN 4000
1855 PRINT PRINT
1860 PRINT PRINT "YOU HAVEN'T PICKED THE PLANETS YET"
1870 PRINT PRINT : PRINT
2000 PRINT "CHOOSE THE PLANETS YOU WANT TO DISPLAY"
2005 PRINT
2010 PRINT "ENTER A 1 FOR YES AND A 0 FOR NO"
2011 PRINT
2012 REM (2020-2079) GET SPECIFIC VALUES FOR EACH PLANET
2013 REM Sl=ORBITAL PERIOD: Pl=Al*{l-El*El)/2
2014 REM El=ECCENTRICITY: Ul=Pl / El:Kl=l/El
2015 REM REM Al= MINIMUM AND MAXIMUM DISTANCE FROM THE SUN
2016 REM Jl=LONGITUDE OF PERIHELION IN RADIANS
2017 REM Wl= DAYS FROM 0 DEGREES TO PERIHELION FOR 1980
2018 REM TT=SCALING FACTOR TO USE FULL PLOTTING AREA IF SELECTED PLANET

S ARE DISPLAYED
2020 INPUT "DISPLAY MERCURY ";ME
2021 Sl 87.969
2022 El .2056
2023 Al 43.403 + 28.597
2024 Pl Al * (1 - El * El) / 2
2025 Kl 1 I El
2026 Ul Pl / El

2027 Jl = 77.1 * QI 180
2028 Wl = 37.58
2029 IF ME= 1 THEN TT= 2.3
2030 INPUT "DISPLAY VENUS ";VE
2031 S2 224.701
2032 E2 .0068
2033A2 67.726+66.813 "'
2034 P2 A2 * (1 - E2 * E2) I 2
2035 K2 1 I E2
2036 U2 P2 / E2
2037 J2 131.3 * Q I 180
2038 W2 140.5
2039 IF VE= 1 THEN TT= 1.5
2040 INPUT "DISPLAY EARTH ";EA
2041 S3 = 36S.2S6
2042 E3 = .0167
2043 A3 94.SSS + 91.44S
2044 P3 A3 * (1 - E3 * E3) / 2
204S K3 1 I E3
2046 U3 P3 / E3
2047 ~3 102.6 * Q I 180
2048 W3 - 3
2049 IF EA = 1 THEN TT = l.OS
20SO INPUT "DISPLAY MARS ";MA
20Sl S4 = 686.980
20S2 E4 = .0934
20S3 A4 = 1S4.936 + 128.471
20S4 P4 = , A4 * (1 - E4 * E4) / 2
20SS K4 1 I E4
20S6 U4 = P4 / E4
20S7 J4 = 33S.7 *QI 180
20S8 W4 = 289
20S9 IF MA = 1 THEN TT = .6
2060 INPUT "DISPLAY JUPITER ";JU
2061 SS 4332.12S
2062 ES .0478
2063 AS S07.046 + 460.S9S
2064 PS AS * (1 - ES * ES) I 2
206S KS 1 I ES
2066 US PS I ES
2067 JS 13.6 * Q I 180
2068 ws 1604
2069 IF JU = 1 THEN TT = .19
2070 INPUT "DISPLAY SATURN " ;SA
2071 S6 1082S.863
2072 E6 .OSSS
2073 A6 937.S41 + 838 . 42S
2074 P6 A6 * (1 - E6 * E6) / 2
207S K6 l I E6
2076 U6 P6 / E6
2077 J6 9S.s *Q I 180
2078 W6 211S
2079 IF SA= 1 THEN TT= .1
3900 HOME : PRINT : PRINT
4000 PRINT : PRINT " DO YOU WANT ": PRINT

Partyka

4010 INPUT "POINT (0) OR CONTINUOUS (1) PLOTS ";TY
401S IF TY < > 0 AND TY < > l THEN 4000
4020 PRINT : PRINT : PRINT
4030 PRINT : PRINT "DO YOU WANT TO START AT": PRINT
4040 PRINT "A SPECIFIC DATE (0) ": PRINT
40SO INPUT "OR THE BEGINNING OF THE YEAR (1) " ;DT
40Sl IF DT < > 0 AND DT ~ > l THEN 40 20
40S2 IF DT = 1 THEN 4060
40S3 PRINT : PRINT : PRINT
40S4 INPUT "ENTER # OF DAYS SINCE JAN 0, 1980 ";DE
40S7 Zl = DE
4060 PRINT : PRINT : INPUT "ENTER OF DAYS TO PLOT ";DN
4070 PRINT : PRINT : PRINT
4080 INPUT "ENTER # OF DAYS BETWEEN PLOTS ";DA
4082 IF DA < > 0 THEN 4800
4084 PRINT : PRINT
4086 PRINT "O NOT ALLOWED": GOTO 4070
4090 REM 4800 INIT HIGH RES, FULL SCREEN , PAGE 2
4800 HGR2

Solar System

4802 REM (4805-4860) PLOT REFERENCE POINTS AND OUTER 10 DEGREE CIRCLE

141

142 Education

4805 HCOLOR= 3
4810 X = 140:Y 96: GOSUB 100
4811 X = 14l:Y 96: GOSUB 100
4815 X = 248:Y 96: GOSUB 100
4820 FOR Ll = 0 TO Q2 STEP l / 36 * Q2
4830 X = Xl + COS (Ll) * 105.9
4840 Y = Yl - SIN (Ll) * 105.9 * FA
48 50 GOSUB 100
4860 NEXT Ll
4900 REM (5100-5140) SET UP VALUES FOR MERCURY AND PLOT
5100 IF ME = 0 THEN 5200
5110 A = Al:P = Pl:E = El:PE = Ul:EZ = Kl:SRD = Sl:J = Jl:W Wl:Z Zl +

w
5120 GOSUB 200:Fl = X:Gl = Y
5125 IF TY = l THEN 5140
5130 X = Ml:Y = Nl: HCOLOR= 0: GOSUB 100
5140 X = Fl:Y = Gl:Ml = X:Nl = Y: HCOLOR= 3: GOSUB 100
5190 REM (5200-5240) SET UP VALUE FOR VENUS AND PLOT
5200 IF VE = 0 THEN 5300
5210 A = A2:P = P2:E = E2:PE = U2:EZ = K2:SRD = S2:J = J2:W W2:Z Zl +

w
5220 GOSUB 200:F2 = X:G2 = Y
5225 IF TY = l THEN 5240
5230 X = M2:Y = N2: HCOLOR= 0: GOSUB 100
5240 X = F2:Y = G2:M2 = X:N2 = Y: HCOLOR= 3: GOSUB 100
5290 REM (5300-5240) SET UP VALUES FOR EARTH AND PLOT
5300 IF EA = 0 THEN 5400
5310 A = A3:P = P3:E = E3:PE = U3:EZ = K3:SRD = S3:J = J3:W W3:Z Zl +

w
5320 GOSUB 200:F3 = X:G3 = Y
5325 IF TY = l THEN 5340
5330 X = M3:Y = N3: HCOLOR= 0: GOSUB 100
5340 X = F3:Y = G3:M3 = X:N3 = Y: HCOLOR= 3: GOSUB 100
5390 REM (5400-5440) SET UP VALUES FOR MARS AND PLOT
5400 IF MA = 0 THEN 5500
5410 A= A4:P = P4::E = E4:PE = U4:EZ = K4:SRD = S4:J = J4:W W4:Z Zl +

w
5420 GOSUB 200:F4 = X:G4 = Y
5425 IF TY = l THEN 5440
5430 X = M4:Y = N4: HCOLOR= 0: GOSUB 100
5440 X = F4:Y = G4:M4 = X:N4 = Y: HCOLOR= 3: GOSUB 100
5490 REM (5500-5540) SET UP VALUES FOR JUPITER AND PLOT
5500 IF JU = 0 THEN 5600
5510 A = A5:P = P5:E = ES:PE = U5:EZ = KS:SRD = S5:J = JS:W WS:Z Zl +

w
5520 GOSUB 200:F5 = X:G5 = Y
5525 IF TY = l THEN 5540
5530 X = MS:Y = NS: HCOLOR= 0: GOSUB 100
5540 X = F3:Y = G5:M5 = X:NS = Y: HCOLOR= 3: GOSUB 100
5590 REM (5600-5640) SET UP VALUES FOR SATURN
5600 IF SA = 0 THEN 6000
5610 A = A6:P = P6:E = E6:PE = U6:EZ = K6:SRD = S6:J = J6:W W6:Z Zl +

w
5620 GOSUB 200:F6 = X:G6 = Y
5625 IF TY = l THEN 5640
5630 X = M6:Y = N6: HCOLOR= 0: GOSUB 100
5640 X = F6:Y = G6:M6 = X:N6 = Y: HCOLOR= 3: GOSUB 100
6000 Zl = Zl + DA
6100 IF Zl > DE + DN THEN 7000
6200 GOTO 5100
7000 X = 279:Y = 190: GOSUB 100: INPUT A$
7050 REM (7000) PLOT POINT 297 190 TO INDICATE END OF SIMULATION THEN W

AIT FOR INPUT OF ANY CHARACTER TO START AGAIN
7100 Zl = O:DE = 0
7200 GOTO 1000

143

Programming with Pascal
by f ohn P. Mulligan

This overview of Pascal discusses the features of the
language and provides a sample program illustrating its
structure and ease of use.

One of the first things I realized after purchasing my Apple IT computer system,
was that programming in BASIC was really a pain. Although BASIC is very
suitable for programming games and relatively simple programming systems, I
feel that its usefulness declines in direct proportion to the complexity of the
application. There are a number of important reasons for this.

First of all, it is very difficult to program in BASIC using Structured program­
ming techniques. Structured programming is a concept that has become widely
accepted over the last few years as a method for simplifying program design and
coding, and any subsequent maintenance. Basically, the program is designed by
continuously breaking the main problem down into smaller problems, and then
by writing one program module to solve each of the smaller problems. The
modularization additionally serves to enhance readability and logic design.

Another aspect of programming that helps in understanding logic flow is the
concept of ''prettyprinting' ' , if I may borrow a term. This is simply writing the
program in such a way as to promote ease of reading, and to indicate logic flow by
indentation. Apple's BASICs are notoriously difficult to read, although this is
understandable because the BASIC Interpreter needs to parse the text directly at
execution time and needs the text formatted in a specific manner.

The last, and for me, most important fault I see with BASIC is that it is
tediously slow. This again is due to the interpretation of the BASIC textual
statements. In some applications, this is quite acceptable, but for high volume
processing, this becomes increasingly important. Until recently, I overcame this
factor by doing most of my programming on the Apple II in Assembly language.

Now that I have aired my grievances about BASIC, let's turn to Pascal. Pascal
was first developed by Niklaus Wirth, who tried to develop the perfect program­
ming language. This language is actually based on the ALGOL 60 programming
language which is, like Pascal, a procedure-oriented language. The language
developed by Wirth was named after the French mathematician Blaise Pascal, and
was de~igned as a language to teach programming concepts. Although originally
used on minicomputer systems, it is excellent for microprocessor-based systems
as well. ·

144 Education

The nice thing about Pascal is that it has all of those traits that BASIC lacks,
and more. The Apple II implementation of U.C.S.D. Pascal is a very excellent pro­
gramming system that is convenient, sophisticated and quite powerful. However,
rather than concentrating on the operating system and the program development
aspects of the system, I would like to talk about Pascal itself.

First of all, it is a compiler language. The program text is input to the com­
piler, and a Pascal P-code object module is generated that is executed by the Pascal
P-machine emulation program. This speeds up program execution at least ten
times over an equivalent BASIC program. Speed advantages are not the only
benefit to program compilation. The program text can be written free form, which
promotes the use of prettyprinting, and this in tum increases readability.

For example, I have written a program that sorts an array of integer numbers
using the QUICKSORT algorithm. This is one of the most efficient sorting tech­
niques that has been yet discovered, but it is somewhat confusing at first glance.
Essentially, the array is sorted by the following means: First, the array is split into
two halves and a routine is called for each half which first estimates a value that is
in the middle of the range. When this is done, the array section being operated on
is scanned and all values less than or greater than the estimated value are placed
on their respective half of the array section. When this is accomplished, the array
section is split and the procedure is again called.

Look at the program example, TESTSORT. The first thing to remember about
Pascal programs is that 'first is last'. In other words, any variable, constant, or pro­
cedure must be defined before it is referred to. That is why the executable
statements for any program or procedure are the last statements in that program or
procedure.

A procedure is basically a program subroutine that is, or should be,
accomplishing a discrete function within the program. Any procedure may also be
composed of one or more procedures. In the example, procedure PRINT is a stand­
alone procedure, while procedure SPLIT is constructed using four sub-modules,
SWITCH, BUBBLE, MOVEUP and MOVEDN.

Notice also that variables and constants are always declared prior to their use
at the beginning of the program or procedure. Additionally, these data areas are
global to the lexical level of the program at which they are defined. In other words,
the constant MAXMEMS is available to any statement in the program because it is
defined at the highest level, but the variable HOLD can only be accessed from
within procedure SWITCH.

This feature of defining variables for a sub-module allows the technique of
recursion to be used. Simply put, this means that a procedure is able to call itself
as a subroutine. This is in fact what the procedure SPLIT is doing. By using recur­
sion, the programmer can keep the coding simple, and yet write extremely effi­
cient programs. In this example, SPLIT is initially called from the main program
logic, and the value 0 and the variable ACTMEMS are passed as parameters. At the
end of the SPLIT processing, the size of the array segment being manipulated is

Mulligan Pascal 145

evaluated. At this point, the array is broken into two halves and the procedure is
called again for each half. This process continues until the array segment to be
passed to the SPLIT procedure is twelve items or less. At this point, a simple bub­
ble sort is called for efficiency reasons and the return is made from the subroutine
call.

This use of recursion is possible because new and unique variables are
generated for each recursional level. This process allows the variables to be at the
proper value when the return to the next higher level is completed. Because of
this, however, a lot of memory is gobbled up in the process and there is an effec­
tive limit to the number of recursion levels possible. In the case of the Apple, a
minimum of six words are used at each level in addition to any variables used, and
each word is considered by the P-machine to be 16 bits. For this reason, the exam­
ple is limited to 285 members in the array.

The use of this recursion technique is what makes the QUICKSORT
algorithm so efficient, however. The first sort that I wrote in Pascal was a simple
bubble sort that took about 70 seconds to sort 100 items in the array. Using
QUICKSORT, this same array will be sorted in about five seconds. The maximum
of 285 elements is sorted consistently in 16 seconds. Even though a machine
language sort would run circles around these figures, try doing some sorts in
BASIC. I'm not even sure that QUICKSORT could be written in BASIC.

There is one last feature of the U.C.S.D. Pascal system that I feel merits a lot
of attention. With this system, machine language subroutines can be linked into
and called from Pascal host programs. These routines are essentially members of
Partitioned Data Sets (PDS) that are called UNITs. These UNITs each have a
unique name, and up to 16 of these UNITs may reside on any one of a number of
subroutine libraries that the programmer can generate. In the TESTSORT pro­
gram, I wanted to use the routines NOTE and RANDOMIZE, which are machine
language procedures that are used to manipulate the Apple's speaker and in
generating random numbers, respectively. These routines reside in an Apple sup­
plied UNIT called Applestuff. This unit is included in the program, and at the end
of compilation is automatically linked in from the system library. Any of the func­
tions and procedures listed at the beginning of the program above the statement
IMPLEMENTATION are now available to the Pascal host program.

I've tried to highlight some of the main features of this very professional soft­
ware system as simply as possible, and in doing so, have tried to indicate the
usefulness of this product without being tedious. Pascal is an exciting develop­
ment on the microcomputer horizon which will allow the serious software
analyst to develop professional applications for microcomputer systems. Oh yes,
there is one last critical point that I have neglected to mention. Programs written
in U.C.S.D. Pascal can be run on any computer system using the U.C.S.D.
Operating System, and there are a lot of micros out there in addition to Apple now
using this operating system. Think about it for a moment. The implications are
truly amazing.

146 Education

1 1 1:0 1 t t$l. PRIMTER:t >
2 1 l:D 1 PROORAl'I TESTSOm
3 1 1:0 3 (1111111111111111111111111111111111)
4 1 t:D 3 (f . f)
5 1 1:0 3 (f OOICKSMT ARRAY IF INTECIR f)
b 1 1 :D 3 (f f)

7 1 110 3 (l*ffllllllllllllllllllllllllllllll)
8 22 1:0 3 {$ }
9 22 1 :D 3

10 22 l:D 3
11 22 2:0 3 Fl.KTl~ PADll..EtSEl.ECT: INTEGER>: INTEGER;
12 22 3:D 3 FIKTI~ BlffiCW(SEl.ECT: INTEGER>: m.EAN;
13 22 4:0 1 PROCEOORE moor csa.ECT: INTEGER; DATA: m .. EAtO;
14 22 S:D 3 FIKTI~ KEYPRESS: IOl...EAH;
15 22 o:o 3 Fl.KTICW ~: INTEGER;
lb 22 7:D 1 ~ RANOCt!IZE;
17 22 S:D 1 PROCE1).JRE NOTEtPITCH, OORATICW: INTEGERl;
18 22 8:D 3
19 22 1:n 3 111P\..BENTATI~
20 22 l:D 1
21 1 t:D 1 USES APPl...ESTl..ff;
22 1 1:0 3
23 1 t:D 3 COOT MX1101S = 284;
24 1 l:D 3
2S 1 t:D ·3 I.JAR OOT : INTERACTIVE;
26 1 t:O 304 C~ : INTERACTIVE;
27 1 1:0 005 tu1 : ARRAYCO .. MXtE11SJ Cf INTEGER;
28 1 t:O 890 ACTl'El'IS, IV : INTEGER;
29 l 1:0 S92 P,D,IX: INTEGER;
30 1 l:D 895 cmcTR : CHAR;
31 1 t:D 8% (f$Pf)
32 1 2:0 1 PROCEIKJRE PRINTtTEXT:STRI~>;
33 1 2:0 43 (l*lfffflllllllllllllllllllll*fffff)
34 1 2:0 43 (I I)
3S 1 2:0 43 (f PRINT THE INTEGER ARRAY t)
36 1 2:D 43 {f f)
37 1 2:0 43 (l*f***lllllllllllllllffff+4******4)
38 1 2:0 43 VAR IX, CTR : INTEGER;
39 1 2:0 45
40 1 2:0 0 BEGIN
41 1 2:1 0 PAGE<OUTl;
42 1 2:1 14 WRITELNtOJT, TEXT>;
43 1 2:1 31 WIUTatH OOT>..i,
44 1 2:1 2.8 WRITELNtcmn .
45 1 2:1 45 IX := O;
46 1 2:1 48 CTR := Q;
47 1 2:1 51 REPEAT
48 1 2:2 51 \IUTE!OIJT,' ':4,NIJ1UXJ:6H
49 1 2:2 81 IX := IX + 1;
5(1 1 2:2 87 CTR :=CTR + H
51 1 2:2 93 IF CTR = 12 THEN
52 1 2:3 99 BEGIN
53 1 2:4 99 CTR := O;
54 1 2:4 102 WRITELN<OOTl
55 1 2:3 109 END;
56 1 2:1 1(19 IJNT IL IX) ACTl'!EMSi
'51 1 2:1 117 WRITaN((.lJTl;
58 1 2:0 124 END;

Mulligan Pascal 147

59 1 2:0 138 (ftPf)
60 1 3:D 1 PROCEIUE SPLIT<X, Y: INTEGER>;
01 1 3:D 3 (1111111111111111111111111111111111)
62 1 3:D 3 (f f)
63 1 3:D 3 (f SPLIT IS A PROCEWE llUCH f)
64 1 3:D 3 (f ~TIAL v ~s TIE ~nt«J. f)
65 1 3:D 3 (f Tl£ ~T lt.GORITif1 USED IS f)
66 1 3:D 3 (f Tl£ ~ICK~T tET~. f)
67 1 3:D 3 (f f)
68 1 3:D 3 (1111111111111111111111111111111111)
69 1 3:D 3 VAR F,L,"ID : INTEGER;
70 1 3:D 6 ODJl>ASS : m.EAN;
71 1 3:D 7
72 1 4:D 1 PROCEWE SWITCH< SWl, SW2: INTEGER>;
73 1 4:D 3 VAR l{JUI : INTEGER;
74 1 4:D 4
7S 1 4:0 0 BEGIN
76 1 4:1 0 lt)lD := tlll'ICSW1Ji n 1 4:1 14 MIJ'ICSWll : = NltlCSW2l;
78 1 4:1 38 tUICSW2l : = lflLD
79 1 4:0 49 END;
8Q 1 4:0 64
81 1 S:D 1 PROCEl)JRE llJBBLE < BB1, BB2: INTEGER>;
82 1 S:D 3 VAR Z,X : INTEGER;
83 1 S:D 5
84 1 5:0 0 BEGIN
8S 1 5:1 0 F~ Z := BB1 TO (BB2 - ll DO
86 1 5:2 13 BEGIN
87 1 5:3 13 FOR X : = (Z + 1l TO BB2 DO
88 1 5:4 26 BEGIN
~ 1 s:s 26 IF ""--'"CZl) NIJl1CXJ THEN SWITCH<Z.Xl;
90 1 5:4 57 END;
91 1 5:2 64 END;
92 1 s:o 71 END;
93 1 s:o 88
94 1 6:D 1 PROCEOORE lt)YEUP;
9S 1 6:0 0 BEGIN
96 1 6:1 0 ODDPASS := FALSE;
97 1 6:1 4 REPEAT
98 1 6:2 4 IF NUMCFJ)= NUl'1CLJ THEN
99 1 6:3 35 BEGIN

1(10 1 6:4 35 SWITCH!F,U;
101 1 6:4 43 F := F + H
102 1 6:4 51 11ID := U
103 1 6:4 57 EX IT O'IO'v'EUP l
104 1 6:3 61 END
105 1 6:2 61 ELSE
106 1 6:3 63 L := L - t;
107 1 i>:l 71 UNTIL ~T (L > Fl;
100 1 6:0 81 END;
109 1 6:0 96
110 1 7:D 1 PROCEDURE l'IOVEDN;
111 1 7:0 0 BEGIN
112 1 7:1 0 ODDPA..~ : = TRUE;
113 1 7:1 4 REPEAT
114 1 7:2 4 IF NIJl[LJ < NUl1ff J THEN
115 1 7:3 3S BEGIN
116 1 7:4 35 SWITCH<F,Lli
117 1 7:4 43 L := L - 1;
118 1 7:4 51 11ID := F;

148 Education

119 1 7:4 57 EXIT <tl:NEDO
120 1 7:3 61 Elll
121 1 7:2 61 EL~
122 1 7:3 63 F := F + 1;
123 1 7:t 71 llfTIL till CL) F>;
124 1 7:0 91 Ell);
12S 1 1:0 96 (ttf>t)
126 1 1:0 96 (111111111111111111111111111111)
127 1 7:0 96 (t t)
128 1 1:0 96 (t MIN LOOIC F~ SPLIT t)
129 1 7:0 96 (t t)
130 1 1:0 96 (111111111111111111111111111111)
131 1 3:0 0 BEGIN
132 1 3:1 0 F := X;
133 1 3:1 3 L := Y;
134 1 3:1 6 "ID := l<F + L> DIV 2H
135 1 3:1 13 IF NJ1CF1 < .._..C"IDl TIEN
136 1 3:2 40 SWITCH<F,"ID>;
137 1 3:1 44 IF .._..CFl) NJ1CLJ TIEN
138 1 3:2 71 SWITCH<F,LH
139 1 3:1 7S ODIPASS : = TRl{;
140 1 3:1 78 ~ILE L) F 00
141 1 3:2 83 IF ODIPASS THEN
142 1 3:3 86 KlVElF
143 1 3:2 86 EL~
144 1 3:3 90 ~;
145 1 3:1 94 IF <"ID - X> > 12 THEN
146 1 3:2 101 SPLIT< X,•UD>
147 1 3:1 103 a~
148 1 3:2 107 BUBBLE <X, "ID H
149 1 3:1 111 IF tV - "ID>) 12 THEN
150 1 3:2 118 SPLIH"ID' V>
151 1 3:1 120 EL~
152 1 3:2 124 atBBLE<"ID' YH
153 1 3:0 128 END;
154 1 3:0 142 (fSf>t)
155 1 3:0 142 (11111111111111111111111111111111)
156 1 3:0 142 (t t)
157 1 3:0 142 (t PROGRM TEST~T LOOIC t)
158 1 3:0 142 (t f)
159 1 3:0 142 (11111111111111111111111111111111)
160 1 1:0 0 IEGIN
lbl 1 1:1 0 RESET<IXJT,'PRINTER:');
162 1 1: 1 41 RESET< CC*, 'cnm.E: '>;
163 1 1:1 62 PIG<CC*H
164 1 1: 1 72 l))TOXY<OS,06); WRITE('1111111111111111111111111111111')l
165 1 1:1 120 OOTOXV<05,07H WRITE('t t');
166 1 t: 1 168 l))TOXY < os. os >; .-uTE < '* lffl\JT NJ1BER (f ELEl'IENTS t');
167 1 1:1 216 OOTOXY(05,09H WRITE('t LESS THAN 285: t');
168 1 1:1 264 l))TOXY(05,10)l ~ITE<'t t');
169 l 1:1 312 OOTOXV(OS,11); WRITE('1111111111111111111111111111111 1);

170 1 1:1 360 l))TOXYl26,09H
171 1 1: 1 365 IJUTCLEAR< 1);
172 1 1:1 368 READLN< ACTl'E1S > ;
173 1 l:t '3f!J7 R~IZE;
174 1 1: 1 390 F~ IV := 0 TO AC~ 00 NIJ'l[!Yl := <IV + RANOO'! !100 3452);
175 1 1:1 446 OOTOXV<06,13H WRITE<'PRINT IJEiORTED ARRAY (V/N>? ');
176 1 1:1 491 UNITCLEAIHl);
177 1 1:1 494 READ<~TR>;
178 1 1:1 505 IF CHRCTR = 'Y' 1l£N

Mulligan Pascal 149

179 1 1:2 512 BEGIN
180 1 1:3 512 GOTOXY((l6.14li WRlTE(,START PRiNTER AND HIT ANY KEY ,);
181 1 1 • ...

·~ 559 UNITCLEARl 1 l;
182 1 1:3 562 READ<CHRCTRl l
183 1 1:3 573 GOTOXY ((JO, 00);
184 1 1 .. -. . ,) 578 PRINT('BEFORE THE SORT - 1)

185 1 1:2 59S END;
186 1 1:1 600 GOTOXY{12. 16li WRITE('S1jRT INITIATED 1);

187 1 1:1 632 p := 18;
188 1 1:1 636 D := 100;
189 1 1: 1 640 NOTE (f', D li
191) 1 1: 1 649 SPLIT(O,ACTMEMSl;
191 1 1:1 655 p := 18;
192 1 1: 1 659 NOTE<P,D)i
193 1 1:1 bbB PAGE<CONl;
194 1 1: 1 678 GOTOXY { 05 .14); WR !TE ('START PR INTER AND HIT ANY KEY ... l ;
195 1 1:1 725 LtU TCLEAR (1 l ;
196 1 t: 1 728 READ< CHRCTR l ;
197 1 1:1 739 PRINT (,, AFTER THE SORT --' i
198 1 1: (I 758 END.

....
Ill
Q

~
BEFORE THE SORT - C>

"' Ct g

213 3303 2154 24(16 189"L 1348 248 1919 492 258<J 23 3433 1786 1291 3451 1394 3244 2128 453 1139 1610 2982 317 3034
1813 2632 2593 2907 575 2310 1815 1938 1246 986 1506 2736
1160 3053 1433 286 1681 1820 1481 Z-.394 2076 3004 519 1051
422 2612 1918 1708 715 1970 2371 3157 BSO 2612 3121 1445
C/i,"9 2442 1161 2602 2043 711 3262 1640 2433 1151 1805 600.

1781 3:::51 2Z-J4 2257 3526 2301 1320 922 1400 2658 423 383
112 2869 179 2360 2239 1770 2238 886 1168 1059 1167 404

3314 648 2967 670 2471 1920 24(11 3420 2313 1246 1445 2854
1025 2014 2824 l;,.57 196 1574 1540 ZSC"..A 1085 1261 1156 2703
2574 2909 1959 419 919 3212 3208 :3258 2971 855 849 5'j9
3527 1064 2566 1270 663 585 1333 9S9 1103 1201 1314 3220
2746 272 2456 1415 1062 303 900 12(16 676 2903 1133 3210
3154 30B 3573 2034 3173 230B 3482 2711 854 1817 3S02 339(1
582 S1j•; 2911 3056 1505 1845 1087 6B3 3(103 ~'258 3317 1010 ~· 1209 1877 606 7-@ 785 2241 bOO 3221 2876 2665 830 2164

1563 3476 1433 1167 1542 1073 3005 1791 1477 3391 653 3043
951 1454 592 3326 1m 1421 2581 3609 1426 1214 1259 1836

3462 1592 1248 347 738 2298 2774 2458 2954 3116 991 2545
644 3243 2061 1381 1841 2171 1352 1568 398 2834 1764 3345

1750 1634 3661 3164 753 3690 1756 712 1019 1201 2603 1630
3486 1601 2211 3279 1122 531 271::1J 3020 348 302 522 874
2205 3427 1907 1857 2243 2691 3134 1570 2394 1725 713 2393
1199 1158 3477 1904 1177 318 1675 3354 2541

AFTER TIE SORT -

23 112 179 196 213 248 272 286 302 303 308 317
318 347 348 383 398 404 419 422 423 453 492 519
522 531 553 559 575 582 585 592 600 605 606 644
648 653 b57 6b3 670 676 683 711 712 713 715 738
753 705 830 849 854 855 874 000 886 900 919 922
929 951 986 989 991 1010 1019 1025 1051 1059 1062 1064

1073 1085 1087 1103 1122 1133 1139 1151 1156 1158 1160 1161
1167 1167 1168 11n 1199 1201 1201 1206 1209 1214 1246 124b
1248 1259 1261 1270 1291 1314 1320 1323 1333 1348 1352 1381
1394 1400 1415 1421 1426 1433 1433 1445 1445 1454 14n 1481
1505 1506 1540 1542 1563 1568 1570 1574 1592 1601 1610 1630
1634 1640 1675 1681 1700 1725 17SO 1756 1764 1no 1781 1786
1791 1805 1813 1815 1817 1820 1836 1041 1845 1857 1877 1892
1904 1907 1918 1919 1920 1938 1959 1970 2014 2034 2043 2061
2076 2128 2154 2164 2171 2205 2211 2234 2238 2239 2241 2243
2257 2298 2301 2308 2310 £313 2338 7.:SbO 2371 2393 2394 2394 ~
2401 2406 2433 2442 2456 2458 2471 2541 2545 2566 2574 2500 s
2581 2593 2602 2603 2612 2612 2632 2658 2665 2691 2703 2711 ~-

274b 2760 2774 2786 2824 2834 2854 2854 2869 2876 2903 2907 "' ::s

2909 2911 2954 2967 2971 2982 3003 3004 3005 3020 3034 3043
3053 3056 3116 3121 3134 3154 3157 3164 3173 3200 3210 3212

~
3220 3221 3243 3244 3258 3258 3262 3279 3303 3314 3317 3326 "'
3345 3351 3354 :;m 3391 3420 3427 3433 3451 34b2 3476 3477 0

""
3482 3486 3502 3526 3527 3573 3609 3661 3690

.....

....
Cl1

•

6
GAMES

Introduction

Spelunker
Thomas R. Mimlitch

Life for Your Apple
Richard F. Suitor

Apple II Speed Typing Test with Input Time Clock
John Broderick, CPA

Ludwig Von Apple II
Marc Schwartz and Chuck Carpenter

153

154

155

168

173

175

154

Introduction
Now who can resist a good "fun and games" program for the Apple? Certainly not
us-so here are some of the more interesting games we've come across.
" Spelunker" by Thomas Mimlitch brings the excitement of an adventure game to
your Apple. The program, written in integer BASIC, is guaranteed to provide
hours of enjoyment and suspense. ''Life for Your Apple'' by Dick Suitor brings the
famous Life simulation to your Apple. It is written in integer BASIC, and machine
language for speed. The " Speed Typing Test" by John Broderick (explained by its
title) although not really a game, is a fun program written in integer BASIC.

The last program capitalizes on the musical capabilities of the Apple. "Lud­
wig Von Apple" by Marc Schwartz and Chuck Carpenter, plays a catchy tune. So,
although you didn't buy your Apple solely for playing games, they can be
instructive - and fun!

155

Spelunker
by Thomas R. Mimlitch

Adventure fans, look out: Spelunker is here tor the
Apple. If you dare to enter the world of Spelunker, be
prepared to spend a while-Spelunker can be quite
mesmerizing! As a break, you might want to inspect
techniques and style used in this model game program.
But remember-the world of Spelunker is not tor the
faint of heart!

This game is an adventure fantasy series in which you become directly involved in
exploration of a mysterious cavern in southwest Kentucky called Devils' Delve. If
you have never played before, you should take a guide along. The guide will read
the chamber descriptions as you enter each room for the first time and supply
some hints and clues to help you when you are stuck. Only the guide should use
the room descriptions, word lists, and the map of the caverns. However, younger
players may need' some of these aids to help them.

Spelunker is an interactive game. You must converse with the program to
explore the caverns and locate their treasures. You can talk in sentences if you
wish, but the program will use only one verb and one noun to establish meaning.
For this reason, it is best to converse in verb/noun phrases. In the case of moving
from chamber to chamber,- for example, enter "GOW" or simply "W" and the
verb " GO" will be implied. The Spelunker program will move you into the next
room to the west upon receiving this command. Other examples might include
" TAKE LIGHT" or "JUMP DOWN" .

With this brief introduction you should be ready to explore the caverns of
Spelunker. While you are about it, try drawing a map of the cave. You may also
wish to discover exactly what vocabulary is understood by the program. The
material that follows is for the guide only-so don't ruin your first adventure by
peeking at it.

For the Guide Only

In the 16K Apple II version of Spelunker, the chamber descriptions are not
part of the program because of limited memory size. These room descriptions
have been prepared for the adventurer's guide. The guide may read each room
description as the adventurer enters the chamber for the first time.

156 Games

1. Mouth: You are at the mouth of a large cavern. The sides of the entrance slope
steeply upward, and a mysterious passage leads west into the cave.

2. Tree room: A towering, withered tree stands in what appears to be a dried up
river bed. From it you seem to hear echoing sounds saying, "Water ... water ...
water ... "

3. Writing room: Do not read this description if the room is dark. The writing
room is a large, oval chamber with tall ceilings and massive stalagmites. The
smooth eastern wall has some writing on it-cryptic characters that spell out,
"THE SPIRITS OF THE FRUIT."

4. Pit room: A small chamber with an immense stalagtite hanging from the
center of the ceiling, directly over the mouth of a bottomless pit.

5. South lake shore: You stand at the edge of a misty lake that stretches endless­
ly out before you to the north.

6. West lake shore: You are standing on a damp, sandy shoreline with a very low
passage leading off to the west. A clammy draft issues from the low-ceilinged
passage.

7. North lake shore: A small, sandy beach on the northern edge of Misty Lake.

8. Maze room: Also known as the swiss cheese room. You lose your sense of
direction because twisting passages are coming and going at all points of the
compass.

9. Frozen river room: What appears to be a petrified river bed slopes gently up­
ward leading toward the west. It has a low, four-foot ceiling.

10. Swift river room: You hear swiftly running water, as you enter this room, and
you see a narrow, churning, underground river flowing to the south.

11. Hub room: A magnificently decorated chamber with crystaline designs and
intricate rock formations . A narrow, fast moving river flows through the hub
room.

12. Ice room: Mysteriously, ice forms very quickly in this chamber, encap­
sulating anything left there for too long. There is so much ice that you can't
even get into the room; however, you see an exit on the other side of the
chamber.

13. Chimney room: A small, smoke filled chamber with a fire burning in a
natural fireplace in the north wall. Apparently, a chimney leads far up
through the rock and out of the cavern.

14. Gold room: As you enter this room, the first thing that you notice is a pile of
golden treasures nestled into a nook on the far side. Before you take another

Mimlitch Spelunker 157

step, a foul-smelling ogre jumps out from a hole in the side wall and rushes
forward to protect his gold.

15. Bones room: Lining the walls of this chamber are the skeletons of pirates long
since dead. An ominous curse is uttered by all of the skeletons in unison as
you enter the room, and the curse shadows your travels throughout the
cavern.

16. Bat room: The ceiling is all but invisible for the tens of thousands of bats
sleeping there. In one comer of this room lies an old, rusted chest. As you
open the chest, the bats begin to stir. Inside the chest is a king' s ransom in
jewels: diamonds, rubies and emeralds.

17. Ghost room: An eerie feeling of demonic power lurks in this chamber.

18. Misty Lake: You are in the middle of Misty Lake. A strange glow emanates
from the bottom of the lake. You tum off your light and notice an enormous,
bright pearl nestling inside a gigantic clam. The clam is at the bottom of the
lake, in only ten feet of water.

19. Swift River This narrow, fast flowing river is outside the cavern. It runs south
for a few yards and then disappears underground.

Having been exposed to a fantasy program called Adventure which seems to
reside on many large timesharing networks, I was challenged to see if this type of
game could be handled on a micro. Thus the dream stage began. I thought up
monsters, treasures, a cave structure, tools, tricks and battles. The major goals
emerged:

Pseudo-English input commands (verb-noun phrases)

Interconnected rooms one could travel through

Objects one could take, put, carry and use

Monsters/treasures; do battle, take rewards

Secrets to be discovered

The obvious method was to tabularize as much data as possible so that
similar functions could be implemented as subroutines. This left only special
handling routines to be added.

The program was organized into five major sections. Lines numbered 30xxx
initialize the tables and variables. Lines numbered 4xxx to lOxxx print out the
current location and status for the player. Lines numbered lxxx read and decode
the input string. Lines in the 2xxx range perform the command action, if possible.
In lines with 3xxx numbers the monsters have an opportunity to react to their
environment. Each of these sections was developed, tested and integrated
separately from the others.

158 Games

Verb Table
Sensitive Noun Types

Verb Type Direction Location Weapon Monster Treasure Tools Foods
1 GO 1 x
2 JUMP 11 x x x
3 RUN 1 x
4 WALK 1 x
5 DRIVE 1 x
6 CLIMB 3 x x
7 DIG 2 x
8 CARRY 116 x x x x
9 DROP 116 x x x x

10 PUT 116 x x x x
11 TAKE 116 x x x x
12 USE 36 x x
13 WISH 36 x x
14 THROW 4 x
15 HELP 8
16 KILL 8 x
17 STOP 40 x x
18 HIT 8 x
19 FIGHT 8 x
20 RUB 16 x
21 START 32 x
22 DRINK 64 x
23 EAT 64 x
24 BITE 64 x

Input Commands

A list of verbs and nouns was developed and categorized as to nature or func­
tion. After entering these tables into the program, I worked on the routine to read
and decode input commands. Each word was picked out of the input string, then
searched for in the noun and verb lists. The first recognized verb and noun
numbers were the output of this routine, and this output controlled the action
routines. I later added an edit to compare the noun type and verb type to see if they
were compatible.

VERBS
BITE CARRY CLIMB DIG DRINK DRIVE
DROP EAT FIGHT GO HELP HIT
JUMP KILL PUT RUB RUN START
STOP TAKE THROW USE WALK WISH

NOUNS
APPLE AX BATS BOMB BONES CAVE
CHEST CLAM CURSE DOWN E FIRE
GHOST GOLD ICE KNIFE LAKE LAMP
LIGHT N NE NW OGRE PEARL
RAFT RIVER ROPE s SE SW
TENT TREE TRUCK UP w WATER

Mimlitch Spelunker 159

Noun Table
Noun Type Status (Location}

1 N Direction 0
2 NE Direction 0
3 E Direction 0
4 SE Direction 0
5 s Direction 0
6 SW Direction 0
7W Direction 0
8 NW Direction 0
9 UP Direction 0

10 DOWN Direction 0
11 CAVE Location 0
12 LAKE Location 0
13 RIVER Location 0
14 TREE Location 0
15 AA Weapon 4 = Pit
16 BOMB Weapon 3 = Writing
17 CURSE Weapon 15 = Bones
18 FIRE Weapon 13 = Chimney
19 KNIFE Weapon 1 = Mouth
20 CLAM Monster 18 = Misty Lake
21 BATS Monster 16 = Bat
22 BONES Monster 15 = Bone
23 GHOST Monster 17 = Ghost
24 OGRE Monster 14 = Gold
25 CHEST Treasure 16 = Bat
26 GOLD Treasure 14 = Gold
27 PEARL Treasure 18 = Misty Lake
28 LAMP Treasure 12 = Ice
29 RAFT Tool 5 = South Shore
30 ROPE Tool 9 = Frozen River
31 TENT Tool 1 = Mouth
32 TRUCK Tool 1 = Mouth
33 LIGHT Tool 1 = Mouth
34 WATER Food 0
35 APPLE Food 0
36 ICE Water 12 = Ice

Objects to Take and Put

Parallel to the noun list is the status list which gives the room number where
an object currently resides. A - 1 indicates that the object is in the possession of
the player. In the output section, objects in the current room (LOC) were printed
and the objects in the players possession were also reported. The second action
routine was added next-the TAKE and PUT routine. TAKE changed the status of
a noun to -1, while PUT set its status equal to LOC. Again I tested the program
and played with it, moving things all over the caves.

160 Games

Cave Room Structure

The map was finalized, giving each room a number. The interconnections
were entered into the N, E, S and W arrays, with a positive number indicating an
exit in that direction to the room number specified. A series of statements were
inserted to print out the current room descriptions, but at the time only the room
name was printed. Later I discovered that there was not enough memory to put in
the complete descriptions in any event.

MOVE-the first of the action routines-was coded next. If there was a possi­
ble move in the requested direction, the LOC variable was set to the new room
and its description was printed. This portion was a lot of fun to test and debug.

Room Table
Room Tunnel Connects Notes

N E s w
1 Mouth 50 19 2 Truck Tent Knife Light
2 Tree 3
3 Writing 2 10 20 Bomb
4 Pit 20 Ax. Use rope to go down
5 South Lake Shore -18 Raft-north Rope-up
6 West Lake Shore -18 12 Raft-east
7 North Lake Shore 9 -18 Raft-south
8 Maze 8 9 8 20 All 45's return to Maze
9 Frozen River 7 1 8 Rope

10 Swift River Room 3 -11 Raft-south
11 Hub 13 14 -49 21 -15 22 12 (NE SE SW NW)
12 Ice 11 6 Ice Lamp
13 Chimney 11 Fire Rope-up
14 Gold 11 Gold Ogre
15 Bones 11 Curse Bones
16 Bats 22 Chest Bats
17 Ghost 21 Ghost
18 Misty Lake 7 5 6 Pearl Clam
19 Swift River 1
20 Intersect 1 8 3 4
21 Intersect 2 11 22 17
22 Intersect 3 11 16 21
49 Falls (over) Death
50 Home End game

Monsters, Treasures and Battles

The monsters and treasures were merely noun objects in the caves, like all of
the other things. A relationship was defined between the monster, his treasure,
the player, and the player's use of weapons. Thus grew up the monster table and
the weapons table. The monster table identifies the monster, determines his

Mimlitch Spelunker 161

strength, defines his treasure, identifies his home chamber, and determines how
quickly he moves about the caves. The monsters move through the caverns to find
their treasures if they are stolen. In the table are certain base probability factors for
the monster to kill the player, steal all the player's treasures, or steal only the
treasure that originally belonged to the monster.

The weapons table details the power of each of the player's weapons and
determines which monsters they are effective against. The next action routine
was ready to implement the ATTACK routine. This is invoked whenever a
weapon is used, put, thrown, and so on. Any monsters in the room are attacked,
and their life forces are decreased by a random amount limited by the force of the
weapon usea. When a monster's life force is reduced to zero, it is eliminated.

Monster Table

Monster name Ogre Bats Ghost Clam Ice Bones
Monster number 24 21 23 20 36 22
Reward Gold Chest Pearl Lamp
Reward number 26 25 0 27 28 0
Move delay 0 0 0 1 1 1
Move increment 2 4 6 0 0 0
Attack count 0 0 0 0 0 0
Kill probability 60 60 0 90 0 0
Steal all probability 30 40 0 60 60 0
Steal own probability 55 90 0 65 0 0
Home room number 14 16 17 18 12 15
Life force quotient 100 40 50 60 25 75

Weapon Table
Weapon name Ax Bomb Fire Knife Light Ice
Weapon number 15 16 18 19 33 36
Power 100 150 30 50 30 40
Attacks Monster No. 1 24 24 21 24 23 21
Attacks Monster No. 2 22 22 20
Attacks Monster No. 3 36 36

Of course, it is not fair to let the player cut the demons to shreds without
allowing them to fight back. Thus came the REACTION routines. Happy
monsters are those that have their own treasures in their room and have not been
attacked. Any monsters that are not happy will seek someone to vent their anger
upon, and that person is the player. A very intricate set of probabilities decides the
outcome of this anger. The more the monster has been hurt by the player's
attacks, the weaker his counterattack will become. But also, the more times he
has countered in vain, the madder he gets! Nothing is more deadly than a mad
monster.

162 Games

Lots of testing and refinements later, SPELUNKER took its maiden voyage.
Surely a program like this is never finished. The framework has been laid for all
sorts of adventures-whatever one can imagine. And, now that I have more
memory, I can expand the scope and capabilities of the program.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

100
1000
1005
1010
1020
1050
1060
1070
1080
1200
1500

1520
1540
1560
1580
1590
1600

1610
1700

1710
2000
2010
2020
2030
2040
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2191
2192
2193
2194
2195
2196
2197
2200
2205
2210
2220
2230
2240
2250
2260
2270
2300
2320
2325

2330

************************* REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM *

* *
* SPELUNKER *
* THOMAS R. MIMLITCH *
* *
* SPELUNKER *
* *
* COPYRIGHT (C) 1981
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *

*
REM *************************
REM
REM
GOTO 30000: REM TO INITIALIZE

Mimlitch

PRINT"?";: INPUT IN$:IN$(LEN(IN$)+1)=" GO N * ":I=l
NOUN=O:VERB=O
GOSUB 1500: GOSUB 1600 : GOSUB 1700
IF W3$#"* " THEN 1010
NTYP=NTYP(NOUN):VTYP=VTYP(VERB)
IF (VTYP MOD (NTYP*2))>=NTYP THEN 2000
PRINT "ICH VERSTEHE NICHT"
GOTO 3000
GOTO 2000

Spelunker 163

W3$="":S=O: FOR I=I TO LEN(IN$): IF S=O THEN 1520: IF IN$(I,I)=" "THEN
1580: IF S=5 THEN 1560: GOTO 1540
IF IN$(I,I)•" " THEN 1560
S=S+l:W3$(S)•IN$(I,I)
NEXT I
IF S<5 THEN W3$(S+l)•SPC$(S+l)
RETURN
IF NOUN#O THEN RETURN : FOR J•l TO NUMN: IF W3$#NOUNS$(J*5-4,J* 5) THEN
NEXT J: IF J>•NUMN THEN RETURN :NOUN•J:W2$•W3$
RETURN
IF VERB#O THEN RETURN : FOR J•l TO NUMV: IF W3$#VERBS$(J*5-4,J*5) THEN
NEXT J: IF J>NUMV THEN RETURN :VERB•J:Wl$•W3$
RETURN
REM MOVE
NLOC•O
IF NOUN>8 THEN 2200
IF (NOUN MOD 2)•1 THEN 2100
IF LOC#ll AND LOC#8 THEN 1070
GOTO 2100+NOUN*l0
NLOC•N(LOC): GOTO 2190
NLOC•O: GOTO 2190
NLOC•E(LOC): GOTO 2190
NLOC•l5: IF LOC•8 THEN NLOC•8: GOTO 2190
NLOC•S(LOC): GOTO 2190
NLOC•22: IF LOC•8 THEN NLOC•B: GOTO 2190
NLOC•W(LOC): GOTO 2190
NLOC=l2: IF LOC•B THEN NLOC•S: GOTO 2190
IF RAFT•l THEN NLOC• ABS (NLOC)
RAFT•O:PLOC•LOC
IF NLOC>O THEN LOC•NLOC
IF NLOC#l2 THEN 2900
IF M(50)<5 THEN 2900
IF PLOC•6 THEN S(l2)•0
IF PLOC•ll THEN W(l2)•0
GOTO 2900
IF (NOUN•9 OR NOUN•lO) AND ROPE•O THEN GOTO 1070
IF NOUNf9 THEN 2250
IF LOC#5 AND LOCl13 THEN 1070
IF LOC•5 THEN LOC•4
IF LOC•l3 THEN LOC•50
GOTO 3000
IF NOUN#lO THEN 2300
IF LOC#4 THEN 1070
LOC•5: GOTO 3000
IF VERB•B OR VERB•ll THEN 2320: GOTO 2350
IF NUMP•B THEN 1070
IF NOUN•34 AND (LOC•l9 OR LOC•lO OR LOC•5 OR LOC•lB OR LOC•7 OR LOC•
6 OR LOC•ll) THEN 2345
IF STA(NOUN)#LOC THEN 1070

164 Games

2335 IF NOUN=28 AND M(50)>0 THEN 1070
2345 STA(NOUN)=-1: GOTO 3000
235 0 IF VERB=9 OR VERB=lO OR VERB=l4 THEN 2370: GOTO 2400
2370 IF STA(NOUN)#-1 THEN 1070
2380 STA(NOUN)=LOC
2383 IF NOUN#33 THEN 2420
2385 IF VERB#lO THEN STA(33)=0
2387 LIGHT=O
2390 GOTO 2420
2400 IF VERB#l2 THEN 2900
2410 IF STA(NOUN)#-1 THEN 1070
2420 FOR WT=l TO NUMW*5-4 STEP 5
2425 IF NOUN#WT(WT) THEN 2480
2430 FOR D=2 TO 4
2435 IF (STA(WT(WT+D)) MOD lOO)#LOC THEN 2470
2440 FOR M=l TO NUMM*l0-9 STEP 10
2445 IF WT(WT+D)iM(M) THEN 2460
2446 HT= RND (WT(WT+l)) / (CURSE+l)
2448 M(M+9)=M(M+9)-HT
2449 IF M(M+4)=0 THEN M(M+4)=1
2450 PRINT "ASSAULT ON ";NOUNS$(M(M)*5-4,M(M)*5);", ";HT;" UNITS"
2452 PRINT "ITS LIFE FORCE IS NOW ";M(M+9);"%"
2455 IF M(M+9) >0 THEN 2460
2456 PRINT NOUNS$(M(M)*5-4,M(M)*5);" HAS BEEN ELIMINATED"
2457 STA(M(M))=0
2460 NEXT M
2470 NEXT D
2480 NEXT WT
2490 IF NOUN#l 6 OR VERB=lO THEN 2500
2492 STA(l6)=0 : GOTO 2493+ RND (4)
2493 N(LOC)=O: GOTO 2500
2494 E(LOC)=O: GOTO 2500
2495 S(LOC)=O: GOTO 2500
2496 W(LOC)=O
2500 IF NTYP#32 THEN 2900
2510 IF NOUN#33 THEN 2520: IF VERE=l2 THEN LIGHT=l: GOTO 2900
2520 IF NOUN#29 THEN 2530:RAFT=l : GOTO 2900
2530 IF NOUN#30 THEN 2540:ROPE=l: GOTO 2900
2540 REM
2900 IF NOUN<ll THEN ROPE=O
2910 IF STA(30)=LOC THEN ROPE=l
2920 IF LOC=l2 THEN 3000
2930 W(l2)=6:S(l2)=11
3000 REM RE-ACTION
3010 FOR M=l TO NUMM*l0-9 STEP 10
3020 IF STA(M(M))#O THEN GOSUB 3800
3030 NEXT M
3040 IF STA(35)=0 AND STA(34)=2 THEN STA(35)=2
3090 GOTO 4000
3800 REM MONS SUB
3802 MRM=STA(M(M)) MOD 100
3810 IF (STA(M(M+l)) MOD lOO)=MRM AND M(M+4)=0 THEN 3900
3820 IF MRM=LOC THEN 3860
3830 M(M+2)=(M(M+2)+M(M+3)) MOD 6
3840 IF M(M+2) #0 THEN RETURN
3845 GOTO 385C+ RNC 141
3850 NLOC=N(MRM): GOTO 3855
3851 NLOC=E(MRM): GOTO 3855
3852 NLOC=S(MRM): GOTO 3855
3853 NLOC=W(MRM): GOTO 3855
3855 IF NLOC<l THEN RETURN
3858 STA(M(M))=NLOC+STA(M(M))-MRM: RETURN
3860 M(M+4)=M(M+4)+1
3865 KP=(M(M+5)-(STA(M(M+l))=-1)*40+9*(M(M+4)-2))*M(M+9)/100+CURSE
3866 IF KP>60 THEN KP=60
3870 SAP=(M(M+6)+9 *(M (M+4)-2)) *M(M+9)/100+CURSE
3871 IF SAP>70 THEN SAP=70 '
3875 SRP=(M(M+7)+9 *(M(M+4)-2))*M(M+9)/100+CURSE
3876 IF SRP>80 THEN SRP=80
3877 PRINT "ATTACK BY ";NOUNS$((M(M)-1) * 5+1,M(M) *5)
3879 Rl= RND (100):R2= RND (100) :R3= RND (100)
3880 IF KP>Rl THEN 3920
3885 IF SAP>R2 THEN 3940
3887 IF STA(M(M+l))#-1 THEN RETURN
3890 IF SRP>R3 THEN 3960

3895 RETURN
3900 STA(M(M))=M(M+8)
3905 STA(M(M+l))=M(M+8)
3910 RETURN

Mimlitch Spelunker

3920 VTAB 23: TAB 1: PRINT "THE";NOUNS$((M(M)-1)*5+1,M(M)*5) ;"KILLED YOU!"

3924
3925
3940
3945
3950
3957
3959
3960
3965
4000
4020

PRINT KP,Rl
END
FOR I=l TO NUMN
IF NTYP(I)=l6 AND STA(I)=-1 THEN STA(I)=M(M+8)
NEXT I
PRINT " ALL YOUR REWARDS STOLEN"
GOTO 3900
PRINT "HE TOOK BACK HIS VALUABLE"
GOTO 3900
REM OUTPUT
FOR I=3 TO 9: VTAB I: TAB 2: PRINT "
I
GOTO 4000+100*LOC

II;: NEXT

165

4060
4070
4090
4095
4097
4099
4100
4199
4200
4299
4300
4399
4400
4499
4500
4599
4600
4699
4700
4799
4800
4899
4900
4999
5000
5099
5100
5199
5200
5299
5300
5399
5400
5499
5500
5510
5599
5600
5699
5700
5799
5800
5899
5900
5999
6000
6099
6100
6200
6999
8900
8910
9000
9005
9010
9020
9030

POKE 50,63: VTAB 3: TAB 2: PRINT LOC$;: POKE 50,255: PRINT "
VTAB 23: TAB 1

";: RETURN

IF LIGHT=l OR LOC<3 OR LOC=l9 THEN 9100
PRINT "IT IS VERY DARK"
GOTO 9100
LOC$="MOUTH ": GOSUB 4070
GOTO 4090
LOC$="TREE ROOM ": GOSUB 4070
GOTO 4090
LOC$="WRITING ROOM": GOSUB 4070
GOTO 4090
LOC$="PIT ": GOSUB 4070
GOTO 4090
LOC$="SOUTH LAKE ": GOSUB 4070
GOTO 4090
LOC$="WEST LAKE ": GOSUB 4070
GOTO 4090
LOC$="NORTH LAKE ": GOSUB 4070
GOTO 4090
LOC$="MAZE ROOM ": GOSUB 4070
GOTO 4090
LOC$= " FROZEN RIVER": GOSUB 4070
GOTO 4090
LOC$= "RIVER ROOM ": GOSUB 4070
GOTO 4090
LOC$="HUB ROOM ": GOSUB 4070
GOTO 4090
LOC$="ICE ROOM ": GOSUB 4070
GOTO 4090
LOC$="CHIMNEY ": GOSUB 4070
GOTO 4090
LOC$="GOLD ROOM ": GOSUB 4070
GOTO 4090
LOC$="BONES ": GOSUB 4070
IF STA(35)#-l THEN CURSE=CURSE+l5
GOTO 4090
LOC$="BATS ": GOSUB 4070
GOTO 4090
LOC$="GHOST ROOM ": GOSUB 4070
GOTO 4090
LOC$="MISTY LAKE ":
GOTci 4090
LOC$="SWIFT RIVER":
GOTO 4090
LOC$="INTERSECTION":
GOTO 4090
GOTO 6000
GOTO 6000
GOTO 4090

GOSUB 4070

GOSUB 4070

GOSUB 4070

LOC$="0VER FALLS
VTAB 23: TAB 1:

": GOSUB 4070
GOTO 9090

LOC$="YOUR HOME
AMT=O

": GOSUB 4070

IF STA(25)=-l
IF STA(26)=-l
IF STA(27)=-l

THEN AMT=AMT+l3
THEN AMT=AMT+22
THEN AMT=AMT+8

166 Games

9040 IF STA(28)=-l THEN AMT=AMT+5
9050 VTAB 23: TAB 1
9060 IF AMT=O THEN 9090
9070 PRINT "YOU HAVE FOUND $";AMT;","; RND (900)+100;" IN TREASURES"
9080 IF AMT>l3 THEN PRINT "NICE SPELUNKING!"
9090 PRINT "GOOD-BYE"
9099 END
9100 FOR I=2 TO 10: VTAB I: TAB 30: PRINT " " : NEXT I
9105 IF LIGHT=O AND LOC>2 AND LOC#l9 THEN 9290
9110 VTAB 5: TAB 33: PRINT •••: TAB 33: PRINT "+": POKE 50,63
9140 IF N(LOC)=O OR (N(LOC) <O AND RAFT=O) THEN 9150: VTAB 3:. TAB 33; PRINT

"N": TAB 33 : PRINT" "
9150 IF S(LOC)=O OR (S(LOC)<O AND RAFT=O) THEN 9160: VTAB 8: TAB 33: PRINT

" ": TAB 33 : PRINT "S"
9160 IF E(LOC)=O OR (E(LOC)<O AND RAFT=O) THEN 9170: VTAB 6: TAB 35: PRINT

II E"
9170 IF W(LOC)=O OR (W(LOC)<O AND RAFT=O) THEN 9180: VTAB 6: TAB 30: PRINT

9180
9185
9190
9195
9200
9210
9215
9220

9290
9300
9305
9310
9320
9330
9340
9350
9360
9400
9410
9420
9430
9440
9450
9480
9900

"W II

IF (LOC=5 OR LOC=l3) AND ROPE=l THEN 9185 : GOTO 9190
VTAB 2: TAB 33: PRINT "UP"
IF LOC#4 OR ROPE=O THEN 9200
VTAB 10: TAB 33: PRINT "DOWN"
IF LOC=ll OR LOC=8 THEN 9210: GOTO 9290
VTAB 3: TAB 30 : PRINT "N " : TAB 30: PRINT " W"
IF LOC#8 THEN 9220: VTAB 3: TAB 35: PRINT" E": TAB 35 : PRINT "N"
VTAB 8: TAB 30: PRINT" W";: TAB 35: PRINT " S ": TAB 30 : PRINT " S "
; : TAB 35: PRINT " E"
POKE 50,255
IF LIGHT=O AND LOC>2 AND LOC #l9 THEN 9400
VTAB 5: TAB 2:J=O
FOR I=l TO NUMN-1
IF (STA(l) MOD lOO)#LOC THEN 9360
PRINT NOUNS$ ((I-l) *5+1, I*5);" ";
J= (J+l) MOD 4: IF J#O THEN 9360
PRINT "": TAB 2
NEXT I
VTAB 13: TAB 2: FOR I=l TO 1 2 : PRINT" ";: NEXT I
VTAB 13: TAB 2: PRINT "POSSESS IONS 11 ; :NUMP= O
FOR I=l TO NUMN-1
IF STA(I)>=O THEN 9480
PRINT NOUNS$((I-1)*5+1,I*5);" ";
NUMP=NUMP+l: IF NUMP=4 THEN TAB 14
NEXT I
VTAB 23: TAB 1: GOTO 1000
REM INITIALIZE ROUTINE 30000

30010 DIM IN$(40) ,NOUNS$(255) ,VERBS$(255) ,Wl$(5) ,W2$(5) ,W3$(5) ,NTYP(50) ,VTYP(
50) ,STA(SO)

30020
30030
30040
30050
30060
30065
30070
30100
30101
30110

DIM N(50) ,E(50) ,S(SO) ,W(SO)
TEXT : CALL -936
DIM LDC$ (26) ,SPC$ (5) ,M(6*10)
SPC$="
NUMW=6
DIM WT(5*NUMW)
LOC=l
REM INITIALIZE VARIABLES
REM SHOULD BE READ AND DATA STMTS
NOUNS$(LEN(NOUNS$)+l)="N NE E
N "

SE s SW

30120 NOUNS$(LEN(NOUNS$)+l)="CAVE LAKE RIVERTREE"
30130 NOUNS$(LEN(NOUNS$)+l)="AX BOMB CURSEFIRE KNIFE"
30140 NOUNS$(LEN(NOUNS$)+l)="CLAM BATS BONESGHOSTOGRE "
30150 NOUNS$(LEN(NOUNS$)+l)="CHESTGOLD PEARLLAMP"
30160 NOUNS$(LEN(NOUNS$)+l)="RAFT ROPE TENT TRUCKLIGHT"
30170 NOUNS$(LEN(NOUNS$)+l) ="WATERAPPLEICE
30195 NOUNS$(LEN(NOUNS$)+1)="*****"
30199 NUMN=3 7

w

30210 VERBS$ (LEN (VERBS$) +l) ="GO JUMP RUN WALK DRIVECLIMB"
30220 VERBS$(LEN(VERBS$)+l)="DIG

NW

30230 VERBS$(LEN(VERBS$)+l)="CARRYDROP PUT TAKE USE HIT FIGHT"
30240 VERBS$(LEN(VERBS$)+l)="HELP KILL STOP HIT FIGHT"
30250 VERBS$(LEN(VERBS$)+l)="RUB "
30260 VERBS$(LEN(VERBS$)+l)="STARTDRIVE"
30270 VERBS$(LEN(VERBS$)+l)="DRINKEAT BITE "
30295 VERBS$(LEN(VERBS$)+1)="*****"
30299 NUMV=26

UP DOW

30310 FOR I=l TO lO:NTYP(I)=l: NEXT I
30320 FOR I=ll TO 14:NTYP(I)=2: NEXT I
30330 FOR I=l5 TO 19:NTYP(I)=4: NEXT I
30340 FOR I=20 TO 24:NTYP(I)=8: NEXT I
30350 FOR I=25 TO 28:NTYP(I)=l6: NEXT I
30360 FOR I=29 TO 33:NTYP{I)=32: NEXT
30370 FOR I=34 TO 35:NTYP{I)=64: NEXT
30380 NTYP{ 36)=32
30410 FOR I=l TO 6:VTYP(I)=l: NEXT I
30412 VTYP(2)=ll:VTYP(6)=3
30420 VTYP(7)=2
30430 FOR I=8 TO ll:VTYP(I)=ll6: NEXT I
30432 VTYP{l2)=36:VTYP(l3)=36:VTYP(l4)=4
30440 FOR I=l5 TO 19:VTYP(I)=8: NEXT I
30442 VTYP(l7)=40
30450 VTYP(20)=16
30460 FOR I=21 TO 22:VTYP(I)=32: NEXT
30470 FOR I=23 TO 25:VTYP(I)=64: NEXT
30500 FOR IEl TO 14:STA(I)=0: NEXT I
30510 5TA(l5)=4:5TA{l6)=3:5TA(l7)=15
30520 5TA{l8)=13:5TA(l9)=1:5TA(20)=18
30530 5TA(21)=16:STA(22)=15:STA{23)=17
30540 STA(24)=14:STA(25)=16:STA(26)=14
30550 5TA(27)=18:STA{28)=12:STA{29)=5
30560 5TA{30)=9:STA(3l)=l:STA(32)=1
30570 STA(33)=l:STA(34)=0:STA(35)=0
30580 5TA{36)=12

Mimlitch

30600 FOR I=l TO 50:N(I)=O:E(I)=O:S(I)=O:W(I)=O: NEXT I
30610 N{l)=50:N(3)=2:N(5)=-18:N(7)=9:N(8)=8:N(9)=7
30620 N(l0)=3:N(ll)=l3:N(l6)=22:N(l8)=7
30630 N{l9)=l:N(20)=8:N{22)=11

Spelunker

30640 E(2)=l:E(4)=20:E(6)=-18:E(8)=9:E(9)=l:E(ll)=l4:E(l7)=2l:E(20)=3
30650 E{21)=11
30660 S(l)=l9:S(2)=3:5(3)=10:S(7)=-18:S(8)=8:S(l0)=-ll:S(ll)=-49:S(l2)=11

:5(13)=11:5(18)=5
30670 5{21)=22:5(22)=16
30680 W(l)=2:W{3)=20:W(6)=12:W(8)=20:W(9)=8:W(ll)=21
30690 W(l2)=6:W(l4)=ll:W(l5)=ll:W(l8)=6:W(20)=4:W(21)=17:W{ 2 2)=21
30700 POKE 50,63

167

30710 VTAB 24: G05UB 31999: VTAB 1: GOSUB 31999: VTAB 11: GOSUB 31999: VTAB
16: GOSUB 31999

30720 VTAB 2: TAB 1
30730 FOR I=2 TO 23: PRINT" ";: TAB 29: IF I<ll THEN PRINT" ";: TAB 39:

PRINT" ": NEXT I
30740 POKE 50,255: POKE 32,1: POKE 33,37 : POKE 34,16: POKE 35,23: VTAB 17

: TAB 2
30800 FOR I=l TO 60:M{I)=O: NEXT I
30810 M(l)=24:M(2)=26:M{4)=2:M(6)=60:M(7)=30:Ml8)=55:M(9)=14:M(l0)=100
30820 M(ll)=2l:M(l2)=25:M(l4)=4:M(l6)=60:M(l7)=40:M(l8)=90:M(l9)=16:M(20)

=40
30830 M(21)=23:M(24)=6:M(29)=17:M(30)=50
30840 M(31)=20:M(32)=27:M(33)=l:M(36)=90:M(37)=60:M(38)=65;M(39) =18:M(40)

=·60
30850 M(41)=36:M(42)=28:M(43)=l:M(47)=60:M(49)=12:M{50}=25
30860 M(51)=22:M(53)=l:M(59)=15:M(60)=75
30890 NUMM=6
30900 WT(l)=l5:WT(2)=100:WT(3)=24:WT(4)=0:WT(5)=0
30910 WT(6)=16:WT(7)=150:WT(8)=24:WT(9)=22:WT(l0)=36
30920 WT(ll)=l8:WT(l2)=30:WT(l3)=2l:WT(l4)=22:WT(l5)=36
3 0 9 3 0 WT (16) = l 9 : WT (l 7) ·= 5 0 : WT (l 8) = 2 4 : WT (19) = 2 0 : WT (2 0.) = 0
30940 WT(21)=33:WT(22)=30:WT(23)=23:WT(24)=0:WT(25)=0
30950 WT{26)=36:WT(27)=40:WT{28)=2l:WT{29)=0:WT(30)=0
30999 GOTO 4000
31999 TAB 1 : PRINT" ";: RETURN
32000 PRINT (PEEK (202)+ PEEK (2 03)*256)-(PEEK (2 04)+ PEEK (205)*256): EMB

168 Games

LIFE for your Apple
by Richard F. Suitor

Perhaps the best known computer game/simulation of
all time is Life. First appearing over a decade ago, Life
is now found on many mainframes, minis, and micros.
It is used as a bio!ogy model, as a math aid, and of
course, as a game! Now, Dick Suitor's ultra-fast Life
program will bring life to your Apple, too!

A listing of LIFE for the Apple II is described briefly here. The generation calcula­
tions are in assembly language. The display is initiated in BASIC and the routines
are called from BASIC, which will slow down the generation time if desired.

The entire (40 x 48) low resolution graphics display is used. An unoccupied
cell is 0 (black). An occupied one is 11 (pink). During the first half of a generation;
cells that will die are set to color 8 (brown) . Those to be born are set to color 3
(violet) . During this stage, bit 3 set indicates a cell is alive this generation; bits 0
and 1 set indicate a cell will be alive the next generation. During the second half
(mop-up) those with bits 0 set are set alive (color 11), the rest are set to zero.

The BASIC program allows you to set individual cells alive, and to set ran­
domly 1 in N alive in a rectangular region. The boundaries (X = 0 and 39; Y = 0
and 47) do not change, but may be initialized. At the start of the program, NO
PADDLE INTERVAL? is requested. If during the program the paddle reads close to
255 (as it will if none is connected) the number input here will be used instead.
Zero is fastest-several generations per second. Entering 200 gives a few seconds
per generation.

When X and Y coordinates are requested, put in the coordinates for any cells
to be set alive. A negative X terminates this phase. Setting X = N and a negative Y
will initialize a rectangular region to 1 in N randomly occupied and terminate the
initialization. The boundaries of the rectangular region must be input and may be
anywhere in the full display. A glider gun can be fit vertically in the display.
However, don't initialize for Y > = 40 (other than random) for the scrolling dur­
ing initialization input will wipe it out.

Before RUNning the BASIC program, set LOMEM: 2500 to avoid overwriting
the subroutines.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
16
18
50
60
70
99

100
102
103
104
105
107
110
112
120
130
131
132
135
140
150
155
156
157
158
165
170

1000
1010
1020
1100
1105
1110
1120
1130
1800
1810
1820
1830
2000
2001
2002
2005
2010
2020
2030
2040
2100
2500
2510
2520
2530
2540
2590
900C

REM ************************
REM * *
REM * LIFE FOR YOUR APPLE *

* REM *
REM
REM
REM
REM
REM

* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *

*
REM ************************
REM

Suitor

CALL -936: PRINT "MICRO/APPLE VOLUME l"
VTAB 3: PRINT "SEE 'LIFE FOR YOUR APPLE'"
VTAB 5: PRINT "BY RICHARD F. SUITOR"

Life for Your Apple

VTAB 7: PRINT "BASED ON JOHN CONWAY' S GAME OF LIFE"
IF PEEK (-16384)<>160 THEN 18
TEXT : GEN=2088:MOP=2265
DIM A$(7)
Kl=l:K2=l:KBD=-16384
GOTO 1000
REM
POKE -16302,0
GOTO 130
FOR I=l TO K3
CALL GEN
FOR K=l TO Kl: NEXT K
CALL MOP
FOR K=l TO K2: NEXT K
NEXT I
REM
KX= PDL (0)-10
IF KX>240 THEN KX=KXl
IF KX<O THEN KX=O
Kl=KX*6
K2=KX*2
K3=500/(Kl+50)+1
IF PEEK {KBD)=l74 THEN 156
IF PEEK (KBD)=l60 THEN 1000
IF PEEK (KBD)<>l41 THEN 104
TEXT
END
GR
CALL -936
INPUT "NO PADDLE TIME INTERVAL ",KXl
COLOR=ll: INPUT "INPUT X,Y ",X,Y
IF Y<O THEN 1800
IF X<O OR Y<O THEN 2500
IF X>39 OR Y>39 THEN 1100
PLOT X,Y: GOTO 1100
INPUT "X DIRECTION LIMITS ",Il,I2
IF Il<O OR I2>39 OR Il>I2 THEN 1800
INPUT "Y DIRECTION LIMITS ",Jl,J2
IF Jl<O OR J2>47 OR Jl>J2 THEN 1820
CALL -936: GR
POKE -16302,0
CALL -1998
FOR I=Il TO I2
FOR J=Jl TO J2: COLOR=ll: IF RND (X) THEN COLOR=O
PLOT I,J
NEXT J
NEXT I
GOTO 100
POKE - 16302,0
COLOR=O
FOR K=40 TO 47
HLIN 0,39 AT K
NEXT K
GOTO 100
END

169

170 Games

0800 1 *****************************
0800 2 * * 0800 3 * GAME OF LIFE FOR APPLE II *
0800 4 * BY
0800 5 * RICHARD SUITOR
0800 6 *
0800 7 ; * LIFE *
0800 8 ; *
0800 9 ; * COPYRIGHT (C) 1981
0800 10 ; * MICRO INK, INC. *
0800 11 ; * ALL RIGHTS RESERVED
0800 12 ; *
0800 13 ;*****************************
0800 14
0800 15
0800 16 ORG $800
0800 17 OBJ $800
0800 18 ;LIFE ROUTINES
0800 19 ;ENTER AT GENO AND MOPO ALTERNATELY
0800 20 ;2088 AND 2265 DEC. RESP.
0800 21 OLLN EPZ $02 OLD HORIZ LINE
0800 22 NWLN EPZ $04 NEW LINE
0800 23 SUM! EPZ $06 # OF OCC. CELLS IN 3X3
0800 24 SUM2 EPZ $07 1,2 FOR OLD, NEW
0800 25 8UF1 EQU $0940 4C VERT. occ . # 'S
0800 26 BFlP EQU $0942
0800 27 8FlM EQU $093F
0800 28 BUF2 EQU $0970
0800 29 8F2P EQU $0972
0800 30 8F2M EQU $096F
0800 A505 31 NXLN LDA NWLN+Ol
0802 8503 32 STA OLLN+Ol
0804 A504 33 LDA NWLN
0806 8502 34 STA OLLN
0808 18 35 CLC
0809 6980 36 ADC 80
080B 8504 37 STA NWLN
080D A505 38 LDA NWLN+Ol
080F 6900 39 ADC 00
0811 C908 40 CMP 08
0813 DOOC 41 8NE SAME
0815 A504 42 LDA NWLN
0817 6927 43 ADC 27
0819 C952 44 CMP 52
0818 1008 45 BPL LAST
081D 8504 46 STA NWLN
081F A904 47 LDA 04
0821 8505 48 SAME STA NWLN+Ol
0823 18 49 CLC
0824 60 50 RTSl RTS
0825 38 51 LAST SEC
0826 BOFC 52 8CS RTSl
0828 53 ;GENERATE BIRTHS(COLOR=3) & DEATHS (COL=8)
0828 20CA08 54 GENO JSR INIT
0828 200008 55 GEN! JSR NXLN
082E 9001 56 8CC GEN2
0830 57 ;ALL DONE IF CARRY SET
0830 60 58 RTS
0831 A027 59 GJ::N2 LDY 27
0833 98 60 TYA
0834 AA 61 TAX
0835 62 ;COMP VERT DCC #S
0835 A900 63 GEN6 LDA 00
0837 994009 64 STA BUFl,Y
083A 997009 65 STA BUF2,Y
083D 8102 66 LDA (OLLN) , Y
083F FOOF 67 BEQ GEN3
0841 1006 68 BPL GEN7
0843 FE4009 69 INC BUFl,X
0846 FE7009 70 INC BUF2,X
0849 2908 71 GEN? AND 08
0848 F003 72 BEQ GEN3
0840 FE4009 73 INC BUFl,X
0850 Bl04 7 4 GEN3 LOA (NWLN} , Y
0852 FOOF 75 BEQ GENS

Suitor Life for Your Apple 171

0854 1003 76 BPL GEN4
0856 FE7009 77 INC BUF2, X
0859 2908 78 GEN4 AND 08
0858 F006 79 BEQ GENS
08SD FE7009 80 INC BUF2,X
0860 FE4009 81 INC BUFl, X
0863 88 82 GENS DEY
0864 CA 83 DEX
086S lOCE 84 BPL GENG
0867 A026 8S LDY 26
0869 18 86 CLC
086A ADSB09 87 LDA BUF1+27
086D 6DSA09 88 ADC BUF1+26
0870 8S06 89 STA SUMl
0872 AD8B09 90 LDA BUF2+27
087S 6D8A09 91 ADC BUF2+26
0878 8S07 92 STA SUM2
oe1A 93 ;COMP ace #S IN 3X3 & CHANGE COLOR
087A 18 94 GNLP CLC
0878 AS06 9S LDA SUMI
087D 793F09 96 ADC BFlM,Y
0880 38 97 SEC
0881 F94209 98 SBC BFl P,Y
0884 8S06 99 STA SUMl
0886 C903 1 00 CMP 03
0888 FOOE 101 BEQ GEN9
088A 9004 102 BCC GENS
088c C9 04 103 CMP 04
088E FOOE 10 4 BEO GNlO
0890 8102 lOS GENS LDA (OLLN), Y
0892 FOOA 106 BEO GNl O
0894 298F 107 AND SF
0896 S004 108 BVC GN16
0898 8102 109 GEN9 LDA (OLLN), Y
089A 0930 110 ORA 30
089C 9102 111 GN16 STA (OLLN), Y
089E 18 112 GNlO CLC
089F AS07 113 LDA SUM2
08Al 796F09 114 ADC BF2M, Y
08A4 38 llS SEC
OBAS F97209 116 SBC BF2P,Y
08A8 8507 117 STA SUM2
08AA C903 118 CMP 03
08AC FOOE 119 BEQ GN12
08AE 9004 120 BCC GNll
0880 C904 121 CMP 04
0882 FOOE 122 BEO GN1 3
0884 8104 123 GNll LDA (NWLN), Y
0886 FOOA 12.4 BEQ GN13
0888 29F8 125 AND OF8
08BA S004 126 BVC GNlS
08BC 8104 127 GN12 LDA (NWLN), Y
08BE 0903 128 ORA 03
OSCO 9104 129 GNlS STA (NWLN), Y
08C2 88 130 GN13 DEY
08C3 F002 131 BEQ GN14
08C5 1083 132 BPL GNLP
08C7 4C2B08 133 GN14 JMP GENl
08CA A904 134 INIT LDA 04
00cc 8SOS 13S STA NWLN+Ol
08CE A900 136 LDA 00
08DO 8S04 137 STA NWLN
08D2 8D6809 138 STA BF1P+$26
08DS 8D9809 139 STA BF2P+$26
08D8 60 140 RTS
08D9 141 ;MOP UP, IF COLOR AND 3=0, REMOVE (COL=O)
08D9 142 ;OTHERWISE, ALIVE (COL=ll)
08D9 20CA08 143 MOPO JSR INIT
08DC 200008 144 MO Pl JSR NXLN
08DF 9001 14S BCC MOP2
08El 60 146 RTS
08E2 A027 147 MOP2 LDY 27
08E4 8102 148 MOP3 LDA (OLLN), Y
08E6 FOOA 149 BEQ MOPS
08E8 297F lSO AND 7F

172. Games

08EA C910 lSl CMP 10
08EC 3002 1S2 BMI MOP4
08EE 0980 1S3 ORA 80
08FO 9102 1S4 MOP4 STA {OLLN), Y
08F2 Bl04 lSS MOPS LDA {NWLN), Y
08F4 FOOA 1S6 BEQ MOP7
08F6 29F7 rs? AND OF7
08F8 6A 1S8 ROR
08F9 9002 1S9 BCC MOP6
08FB 0904 160 ORA 04
OBFD 2A 161 MOP6 ROL
08FE 9104 162 STA (NWLN), Y
0900 88 163 MOP7 DEY
0901 FOD9 164 BEQ MO Pl
0903 lODF 165 BPL MOP3

166 END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

OLLN 0002 NWLN 0004 SUMl 0006

** ABSOLUTE VARABLES/LABELS

BUF 1 0940 BFlP 0942
BFlM 093F BUF2 0970 BF2P 0972
RTSl 0824 LAST 0825 GENO 0828
GEN? 0849 GEN3 OSSO GEN4 0859
GEN9 0898 GN16 089C GNlO 089E
GN13 08C2 GN14 08C7 INIT 08CA
MOP3 08E4 MOP4 08FO MOPS 08F2

Ed. note: To use the LIFE program-

1. LOAD APPLE LIFE
2. BLOAD LIFE
3. LOMEM:2500
4. RUN

The LOMEM instruction is very important!

SUM 2 0007

BF2M 096F NXLN 0800 SAME 0821
GENl Oe2B GEN2 0831 GEN6 0835
GENS 0863 GNLP 087A GENS 0890
GNll 08B4 GN12 08BC GN15 OSCO
MOPO 08D9 MO Pl 08DC MOP2 08E2
MOP6 08FD MOP? 0900

Apple II Speed Typing Test
With Input Time Clock

by fohn Broderick, CPA

173

So, you think you are a pretty fast typist?! Well, then
you'll definitely want to take the Apple speed typing
test! Find out how many wpms you're really pushing!
And of special interest to the inquisitive-the timed
input subroutine used in this program can be used in
your own programs as well!

The speed typing test is a must for all Appleliers, like myself, who consider
themselves expert typists. However, I did not set out to write a typing test, but to
make an input subroutine (GOSUB 8400) which puts the user under the pressure
of a time clock.

Try the program below:

2000 call-936:
2010VY=10: rem set VTAB
2020 TT= 1: rem set TAB
2030 GOSUB 8400
2040 GOTO 2000

You should hear and see the time at the bottom of the screen with the seconds and
tenths of seconds flying by as you type in an alpha-numeric string.

Subroutine 8400 reads the keyboard in line 8434 with K equal to the ASCII
number. Line 844 7 subtracts 159 from ASCII so that now K is equal to the position
of the equivalent character in string A$ (line 8406). So you can see that we are
slowly building up two words in W$ at line 8447 by adding (to the end of string
W$) the next letter coming in on the keyboard until the ASCII equivalent of car­
riage return (141) is detected at line 8444.

Now when the princess falls into the snake pit, if she doesn't make the right
decision fast enough, the snakes will probably get her.

174 Games

l REM
2 REM
3 REM
4 REM
5 REM
6 REM
7 REM
8

9
10
11
16
17
18
20
21
22
24
26
28
30
40
45
80
84

*
*
*

SPEED TYPING TEST
*
*
*

* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED * REM

REM * *
REM ************************
REM
REM DEFINE VV=
REM THEN GOSUB
REM SAME AS AN
TEXT : CALL -936

VTAB & TT= TAB
8400- THIS DOES THE
ORDINARY INPUT W$

REM CAN BE GIVEN AWAY
PRINT "MICRO/APPLE VOLUME l"
VTAB 3: PRINT "SEE 'SPEED TYPING TEST"
VTAB 4: PRINT " WITH INPUT TIME CLOCK'"
VTAB 6: PRINT "BY JOHN BRODERICK"
IF PEEK (-16384)<>160 THEN 30
DIM TYPE$(250): POKE 33,36
CALL -936
INPUT "DO YOU WISH TO MAKE UP YOUR OWN TEST SENTENCE Y/N ?",TYPE$
IF TYPE$f"Y" THEN 90: PRINT : PRINT "ENTER TEST SENTENCE NOW": PRINT
: PRINT : INPUT TYPE$: GOTO 100

90 TYPE$="NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR COUN
TRY"

100 CALL -936: PRINT :ERR=O: PRINT "YOU ARE TAKING A SPEED TYPING TEST!"

120 PRINT "TYPE THE NEXT SENTENCE APPEARING ON THE SCREEN AS FAST AS YOU CAN

130 FOR I=l TO 4000: NEXT I: REM
135 REM ---BODY OF PROGRAM---
140 CALL -936:ERR=O
150 VV=l3: REM SET SUBPOINT VTAB
160 TT=l: REM SET SUBROUTINE TYAB
170 VTAB (9): TAB 1: PRINT TYPE$: GOSUB 8400
180 VTAB (16): TAB l
200 IF W$=TYPE$ THEN 510: REM
204 REM COMPUTE ERRORS 210- 410
210 FOR Iz LEN(W$) TO LEN(TYPE$) :W$(I+l)=B$(1,l): NEXT I
220 FOR I=l TO LEN(TYPE$): IF I> LEN(W$) THEN ERR=ERR+l: IF I> LEN(W$) THEN

NEXT I
230 IF W$(I,I)tTYPE$(I,I) THEN ERR=ERR+l: NEXT I
400 PRINT : PRINT : CALL -198: PRINT " ";ERR;" ERRORS HIT RETURN": GOTO

520
410 CALL -198: PRINT " ";ERR;" ERRORS";" HIT RETURN"
500 REM - COMPUTE WPM
501 T=(X*23)+J:L= LEN(TYPE$): IF L<l THEN 520
502 L=L-(ERR*6): IF L<2 THEN GOTO 506
503 WPM=(L*l2*20)/T
506 VTAB (24): TAB 30: PRINT WPM;"WPM": VTAB (16): TAB l: RETURN
510 PRINT ··coRRECT- HIT RETURN": PRINT : PRINT : PRINT
520 GOSUB 500: INPUT W$:WPM=O: GOTO 140: REM

8400 REM - SUBROUTINE TO INPUT VIA KEYBOARD TO RETAIN AND INPUT WORD IN W$
8405 IF SWITCH=l THEN 8407:SWITCH=l: DIM W$(255) ,A$(70),B$(2):B$=" "
8406 A$=" I t$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ"
8407 Y=l: POKE -16336,0:W$=" ":X=O:J=O
8410 FOR U=l TO 250
8412 REM USER AREA HERE X= SECONDS SO USER CAN TEST X LIKE IF X=l2 THEN RET

URN
8430 J=J+l: IF J<23 THEN 8434:X=X+l:J=O
8431 FOR BB=l TO 3:KK= PEEK (-16336)- PEEK (-16336): NEXT BB: GOTO 8434
8434 VTAB (24): TAB 13:U=U-l: PRINT X;".";J*l0/23;" SECONDS";:K= PEEK (-

16384)
8437 IF Kll36 THEN 8444:Y=Y-l
8438 VTAB (VV): TAB TT+Y-1: PRINT B$(1,l)
8440 W$(l)=W$(1, LEN(W$)-l)
8441 VTAB (13): TAB l: PRINT W$
8442 POKE -16368,0: NEXT U
8444 IF K=l41 THEN 8540: IF K<l60 THEN NEXT U
8447 K=K-159:W$(Y)=A$(K,K)
8461 POKE -16368,0: VTAB (VV}: TAB TT: PRINT W$:Y=Y+l: NEXT U
8540 Y=l: CALL -756: RETURN

175

Ludwig Von Apple II
by Marc Schwartz

We all know how great the Apple is at generating tunes.
Well, Ludwig Von Apple proves this point again. A
simple program with a simple verse, Ludwig shows just
how easy it can be to make beautiful music with your
Apple!

Owners of the Apple II know from demonstration tapes that the Apple can make
sounds. Not all know that it can make music. Having prepared a horse racing
program, I decided that it would be fitting to start out the game with the bugle call
heard at the track. The following program does just that!

A few words of explanation are in order. The series of "POKEs" in line 30 to
240 set up a musical tone subroutine that is called in line 460. Each note is
represented by a four digit code in A$. The first three digits of the code determine
the note, and the last digit determines the length of the note. Line 410 decodes the
first three digits by converting each digit to ASCII (Apple ASCII), subtracting 176
from each to give three numbers, from zero to nine, and then multiplying the first
number by the second and adding the third. This is one of many possible ways of
generating all the numbers from zero to a large number (ninety in this case) using
single digits.

Line 420 takes the number just generated and subtracts it from forty. This is
done because the subroutine as written is a bit confusing if you want to make
music, since the tones go up as the numbers go down. This step corrects for that.
Line 440 determines how long each tone will be. As "ASC(A$(Z + 3) - 176)"
increases, the note lengthens: a "l" produces a very short note, and a 11 611 makes
a very long note. For some reason, higher tones come out more brief than lower
tones . Line 450 determines the tempo. A larger number speeds up the tune; a
smaller one slows it down. Tempo numbers can go from 1 to 255.

When the program reaches line 470, it returns to line 400 to begin decoding
the next four digits and playing the next note.

I don't think that Chopin would need to worry about competition from
anyone using this program, but it is fun to have a musical computer.

176 Games

1
2
3
4
5
6
7
8
9

10
11

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

12 REM

*

* LUDWIG VON APPLE II *
MARC SCHWARTZ

*
* LUDWIG *
* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *

ALL RIGHTS RESERVED *

14 REM ************************
16 CALL -936
18 VTAB 5: PRINT "LUDWIG VON APPLE II"
19 IF PEEK (-16384)<>160 THEN 19
20 DIM A$(255)
30 POKE 2,173
40 POKE 3,48
50 POKE 4,192
60 POKE 5,165
70 POKE 6,0
80 POKE 7,32
90 POKE 8,168

100 POKE 9,252
110 POKE 10,165
120 POKE 11,1
130 POKE 12,208
140 POKE 13,4
150 POKE 14,198
160 POKE 15,24
170 POKE 16,240
180 POKE 17,5
190 POKE 18,198
200 POKE 19,1
210 POKE 20,76
220 POKE 21,2
230 POKE 22,0
240 POKE 23,96
300 A$="001100715211720172017201"
310 A$(25)="5211521152110071521100710012"
400 FOR Z=l TO LEN(A$)-3 STEP 4
410 Zl=(ASC(A$(Z))-176)*(ASC(A$(Z+l))-176)+ ASC(A$(Z+2))-176
420 Z2=40-Zl
430 POKE O,Z2
440 POKE 24, ASC(A$(Z+3))-176
450 POKE 1,75
460 CALL 2
470 NEXT Z
480 IF PEEK (-16384)=160 THEN 400
490 IF PEEK (-16384)<>141 THEN 480
500 END

Schwartz and Carpenter Ludwig Von Apple 177

Another Version, by C.R. (Chuck) Carpenter

The machine language routine used by Marc is put into the BASIC program by use
of the POKE statement. I was curious to see the type of program used to activate
the Apple II on-board speaker. To do this, I converted the decimal values used for
the POKE statements into HEX with my TI Programmer. Then I loaded the values
into the computer using the system monitor commands that are part of the Apple
II functions.

Once I had the program loaded, I used the monitor commands to list an
assembled version of the routine, as shown in figure 1. The assembler provides a
listing of the program and the mnemonics used with the machine language
opcodes. This made it easier to determine what was happening in Marc's program.
At this point I wanted to see what would happen if I ran the program by itself-as a
machine language routine only.

Because it is somewhat easier to call the routine from a BASIC routine, I
entered the BASIC routine shown in figure 2. This way I could also change the
values stored in memory location $0000 by using the POKE statement. To
initialize the beginning of the routine, I entered a value of $05 into location $0000.
According to Marc, this would produce a high frequency output tone and this
turned out to be the case.

Now that I had everything set up, I was curious to see why the duration of
playing time is not the same for the different tones. To start with, I entered the
program with 3 different values at location $0000. As I ran the program I timed the
length of playing with a stop watch. The value of 5 played for .18 min., 10 played
for .45 min. and 15 played for .85 min. This was in agreement with Marc's
findings. As it turns out, the length of time a particular frequency plays is a func­
tion of the duration of a cycle. The output continues for a number of cycles and
the shorter cycles (higher frequencies) get done sooner. To get the correct musical
timing you would need to include variable delay time for each note played. (The
time between zero crossings adds up to the same total time per note.)

178 Games

0000-
0001-
0002-
OOOS-
0007-
OOOA-
OOOC-
OOOE-
0010-
0012-
0014-
0017-
0018-

OF
00
AD 30 CO
AS 00
20 AS FC
AS 01
DO 04
C6 18
FOOS
C6 01
4C 02 00
60
00

>LIST
10 POKE 0,5
99 END

>CALL 2

> 10 POKE 0, 10
>RUN

>CALL 2

>10POKE0,15
>RUN

>CALL 2

m
BRK
LOA $C030
LOA $00
JSR $FCA8
LOA $01
BNE $0012
DEC $18
BEQ $0017
DEC $01
JMP $00002
RTS
BRK

7
REFERENCE

Introduction

An Apple II Programmer's Guide
Rich Auricchio

Exploring the Apple II DOS
Andy Hertzfeld

Applesoft II Shorthand
Allen [. Lacy

The Integer BASIC Token System in the Apple II
Frank D. Kirschner

Creating an Applesoft BASIC Subroutine Library
N.R. McBumy

179

180

181

186

191

198

204

180

Introduction
Everyone should want to know more about his Apple-the way it works and what
it can do. This chapter presents five articles which explore in depth one facet of
the Apple. Not only are these articles informative, they're also great to have on
hand as a reference (hence the chapter title!).

''An Apple II Programmer's Guide'' by Rick Auricchio is an overview of the
basics of machine language programming. "Exploring DOS" by Andy Hertzfeld
provides a quick look into the Apple's disk operating system. "Applesoft II
Shorthand'' by Allen Lacy provides a look into Applesoft commands and presents
a program which can replace the commands with a 'shorthand.' "Integer BASIC
Token System'' by Frank Kirschner discusses the token system by which integer
BASIC programs are stored in memory. "Creating an Applesoft BASIC Subroutine
Library" by N.R. McBumy demonstrates the increased flexibility the EXEC com­
mand can provide you. From these articles, you're guaranteed to gain a fairly
broad base of Apple knowledge.

181

An Apple II Programmer's Guide
(You Can Get There from Here!)

by Rick Auricchio

The new Apple II reference manual provides a good
amount of documentation on many of the useful
monitor subroutines. Well before the days of that
manual, MICRO published a fairly complete guide to
those routines. And here it is-a clear and concise
programmer's guide which uncovers many monitor
features. It should interest novice and expert alike.

Most of the power of the Apple II comes in a "secret" form-almost
undocumented software. After several months of coding, experimenting, digging,
and writing to Apple, most of the Apple's pertinent software details have come to
light.

Although most of the ROM software has been printed in the Apple Reference
Manual, its Integer BASIC has not been listed; as a result, this article will be
limited to Monitor software. Perhaps when a source listing of Integer BASIC
becomes available, we'll be able to interface with some of its many routines.

First Things First

When I took delivery of my Apple (July 1977), all I had was a "preliminary"
manual-no goodies like listings or programming examples. My first letter to
Apple brought a listing of the Monitor. Seeing what appeared to be a big jumble of
instructions, I set out dividing the listing into logical routines while deciphering
their input and output parameters. Once this was done, I could look at portions of
the code without becoming dizzy.

The Monitor's code suffers from a few ills:

1. Subroutines lack a descriptive "preamble" stating function, calling
sequences, and interface details.

2. Many subroutines have several entry points, each of which does
something slightly different.

3. Useful routines are not documented in a concise form for user access.

182 Reference

I will concede that, while using a "shoehorn" to squeeze as much function as
possible into those tiny ROMs, some shortcuts are to be expected. However, those
valuable Comment Cards don't use up any memory space in the finished
product-'nuff said.

The Good Stuff

The best way to present the Apple's software interface details is to describe
them in tabular form, with further explanation about the more complex ones.

Table 1 outlines the important data areas used by the Monitor. These fields
are used both internally by the Monitor, and in user communication with many
Monitor routines. Not all of the data fields are listed in table 1.

Table 2 gives a quick description of most of the useful Monitor routines: it
contains Name, Location, Function, Input/Output parameters, and Volatile (clob­
bered) Registers.

Don't hesitate to experiment with these routines-since all the important
software is in ROM, you can't clobber anything by trying them out (except what
you might have in RAM, so beware).

Using the "User Exits"

The Monitor provides a few nice User Exits for us to get our hands into the
Monitor. With these, it is a simple matter to "hook in" special 1/0 and
command-processing routines to extend the Apple's capabilities.

Two of the most useful exits are the KEYIN and COUT exits. These routines,
central to the function of the Monitor, are called to read the keyboard and output
characters to the screen. By placing the address of a user routine in CSWH/L or
KSWH/L, we will get control from the Monitor whenever it attempts to read the
keys or output to the screen.

As an example of this exit's action, try this: with no 1/0 board in 1/0 Slot 5,
key-in "Kc5" (5, followed by control K, then Return). You'll have to hit Reset to
stop the system.

Here's what happens: Setting the key-board to device 5 causes the Monitor to
install $C500 as the "user-exit" address in KSWH/L. This, of course, is the
address assigned to 1/0 Slot 5. Since no board is present, a BRK opcode eventually
occurs; the Monitor prints the break and the registers, then reads for another com­
mand. Since we still exit to $C500, the process repeats itself endlessly. Reset
removes both user exits; you must "re-hook" them after every Reset.

These two exits can enable user editing of keyboard input, printer driver pro­
grams, and many other ideas. Their use is limited to your ingenuity.

Name

WNDLEFT
WNDWDTH
WNDTOP
WNDBTM
CH
CV
COLOR
INVFLG

PROMPT
CSWL
CSWH
KSWL
KSWH
PCL
PCH
A1L
A1H
A2L
A2H
A3L
A3H
A4L
A4H
A5L
A5H
ACC
XREG
YREG
STATUS
SPNT

Auricchio Programmer's Guide

Table 1: MONITOR Data Areas In Page Zero

Loe.

20
21
22
23
24
25
30
32

33
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
45
46
47
48
49

Function

Scrolling window: left side (0-$27)
Scrolling window: width (1- $28)
Scrolling window: top line (O-t16)
Scrolling window: bottom line (l-$17)
Cursor: horizontal position (0-$27)
Cursor: vertical posit~on (0-$17)
Current COLOR for PLOf/HLIN/VLIN functions
Video Format Control Mask:
$FF=Normal, $7F=Blinking, $3F=Inverse
Prompt character: printed on GETLN CALL
Low PC for user exit on COUT routine
High PC for uset exit on COUT routine
Low PC for user exit on KEYIN routine
High PC for user exi~ on KEYIN routine
Low User PC saved here on BRK to Monitor
High User PC saved here on BRK to Monitor
A1 to A5 are pairs of Monitor work bytes

User AC saved here on BRK to Monitor
User X saved here on BRK to Monitor
User Y saved here on BRK to Monitor
User P status saved here an BRK to Monitor
User Stack Pointer saved here on BRK

Page 2 ($0200-t02FF) is used as the KEYlN Buffer.

Pages 4-7 ($0400 -$0 7FF) are used as the Screen Buffer.
Page 8 ($0800-$08FF) is the •secondary" Screen Buffer.

183

Another useful exit is the Control Y command exit. Upon recognition of Con­
trol Y, the Monitor issues a JSR to location $03F8. Here the user can process com­
mands by scanning the original typed line or reading another. This exit is often
very useful as a shorthand method of running a program. For example, when
you're going back and forth between the Monitor and the Mini-Assembler, typing
"F666G" is a bit tiresome. By placing a JMP $F666 in location $02F8, you can
enter the Mini-Assembler via a simple Control Y.

Upon being entered from the Monitor at $03F8, the registers are garbage.
Locations Al and A2 contain converted values from the command (if any), and an
RTS gets you neatly back into the Monitor. Figure 1 shows this in more detail.

184 Reference

Name

PLOT

CLRSCR
SCRN
INSTDSP
PRNTYX
PRBL2
PREAD
SETTXT
SET GR
VTAB
CLREOP
HOME
SCROLL
CLREOL
NXTA4
NXTA1
RDKEY
RDCHAR
GETLN

CROUT
PRBYTE
COUT
PR ERR
BELL
RESET
MON
SWEET16

Loe.

F800

F832
F871
F8DO
F940
F94C
FB1E
FB39
FB40
FC22
FC42
FC58
FC70
FC9C
FCB4
FCBA
FDOC
FD35
FD6A

FD8E
FDDA
FDED
FF2D
FF3A
FF59
FF65
F689

Steps
On

AC

AC,Y
AC
ALL
AC
AC,X
AC,Y
AC
AC
AC
AC,Y
AC,Y
AC,Y
AC,Y
AC
AC
AC,Y
AC,Y
ALL

AC,Y
AC
AC,Y
AC,Y
AC,Y

None

Table 2: MONITOR ROUTINES

Function

Plot a point. COLOR contains color in both halves
of byte ($00-$FF). AC: y-coord, Y: x-coord.
Clear screen - graphics mode.
Get screen color. AC: y-coord, Y: x-coord.
Disassemble instruction at PCH/PCL.
Print contents of Y and X as 4 hex digits.
Print blanks: X is number to print.
Read paddle. X: paddle number 0-3.
Set TEXT mode.
Set GRAPHIC mode (GR).
VTAB to row in AC (0-$17).
Clear to end-of-page.
Home cursor and clear screen.
Scroll up one line.
Clear to end-of-line.
Increment A4 (16 bits), then do NXTA1.
Increment A1 (16 bits). Set carry if result >= A2.
Get a key from the keyboard.
Get a key, also handles ESCAPE functions.
Get a line of text from the keyboard, up to the carriage
return. Normal mode for Monitor. X returned with number
of characters typed in.
Print a carriage return.
Print contents of AC as 2 hex digits.
Print character in AC; also works for CR, BS, etc.
Print "ERR" and bell.
Print bell.
RESET entry to Monitor - initialize.
Normal entry to 'top' :if Monitor when running.
SWEET16 is a 16-bit machine language interpreter.
[See: SWEET16: The 6502 Dream Machine, Steve Wozniak,)
[BYTE, Vol. 2, No. 11, November 1977, pages 150-159.)

Command typed:

* 1234.F5A7Yc

Upon entry at $03F8, the following exists:

A 1 L ($3C) contains $34
A1H ($30) contains $12
A2L ($3E) contains $A7
A2H ($3F) contains $F5

Figure 1

Auricchio Programmer's Guide 185

Hardware Features

One of the best hardware facilities of the Apple II, the screen display, is also
the "darkest"-somewhat unknown. Here's what I've found out about it.

The screen buffer resides in memory pages 4 through 7, loc.itions $0400
through about $07F8. The Secondary screen page, although not accessed by the
Monitor, occupies locations $0800 through $0BF8. Screen lines are not in sequen­
tial memory order; rather, they are addressed by a somewhat complex calculation
carried out in the routine BASCALC. BASCALC computes the base address for a
particular line and saves it; whenever the cursor's vertical position changes,
BASCALC recomputes the base address. Characters are stored into the screen buf­
fer by adding the base address to the cursor's horizontal position.

I haven't made too much use of directly storing characters into the screen buf­
fer; usually just storing new cursor coordinates will do the trick via the Monitor
routines. Be careful, though-only change vertical position via the VTAB routine
since the base address must get recomputed!

Characters themselves are internally stored in 6-bit format in the screen buf­
fer. Bit 7 ($80), when set, forces normal (white-on-black) video display for the
character. If Bit 7 is reset, the character appears inverse (black-on-white) video.
Bit 6 ($40), when set, enables blinking for the character; this occurs only if Bit 7 is
off. Thus an ASCII "A" in normal mode is $81; in inverse mode, $01; in blinking
mode, $41.

Reading the keyboard via location $COOO is easy; if Bit 7 ($80) is set, a key has
been pressed. Bits 0-6 are the ASCII keycode. To enable the keyboard again, its
strobe must be cleared by accessing location $C010. Since the keyboard is directly
accessible, there is no reason you can't do "special" things in a user program
based on some keyboard input. If you get keys directly from the keyboard, you can
bypass ALL of the Control and Escape functions.

186 Reference

Exploring the Apple II DOS
by Andy Hertzfeld

The Apple DOS (Disk Operating System) is one of the
most useful enhancements available for your Apple.
The power of this disk system is great-yet for the
longest time no reference information was available on
it. This guide-originally prepared for the old DOS
3.1-filled this information gap until the new DOS 3.2
manual was released. Its concise and concrete
explanations are still invaluable to DOS enthusiasts!

The DOS resides in the highest portion of your system's memory and is about lOK
bytes long. Its exact size depends on how many file buffers you choose to allocate
(one file buffer is needed for each simultaneously open file) . Each file buffer is 595
bytes long and the system provides you with three to start with (you must have at
least one).

The DOS communicates with the rest of the system via the input and output
hooks CSW and KSW located at $36 - $39 (This article uses 11$11 to indicate a hex­
adecimal number) . Through these hooks it is given control every time a character
is input or output. This is a nice scheme because it allows the DOS to be called
from any environment (BASIC, Monitor, Mini-Assembler, etc.) but it has the
drawback of activating the DOS when a command is typed as input to a user pro­
gram which is usually not what you want. Also, since the reset button resets the
hooks, the DOS is disabled whenever the system is reset, which isn' t so great.

The process of loading the DOS into memory for the first time is called
"bootstrapping." Bootstrapping is initiated when control is transferred to the
PROM on the disk controller card. Memory pages 3 and 8 are blown by a
bootstrap. There are two different types of disks you can boot from: masters and
slaves. The distinction is that a master disk can be used to bootstrap on a system
of arbitrary memory size while a slave will only work properly on a system with
the same memory size that created it. This is because since the DOS sits at the top
of memory, its addresses (for JSRs, JMPs, etc.) will be different on systems with
different memory sizes. A master disk cleverly solves this problem by loading into
low memory first and then relocating itself up to where it belongs. Note that this
means that a master bootstrap will blow a lot of additional memory.

Hertzfeld Exploring DOS 187

All addresses in this article are for a 48K system. If your system has memory
size X, subtract 48K - X from the addresses that are given here.

A call to the routine at $9DBF will initialize or re-initialize the DOS. This
routine should be called after every reset to restore the hooks. It is exactly like
typing "300" "G" as Apple's documentation recommends but is a little bit safer
since the $300 location is often destroyed by various programs.

Every diskette has a volume number from 1 to 254. It is assigned when the
diskette is initialized and there is currently no easy way to change it. The volume
number of the current disk is stored at $B7F6. Before most DOS commands the
system checks to see if the current volume number matches the last volume
number used. If it doesn't, a "volume mismatch" error is generated. While this
"feature" may be nice for large business applications that don' t want the wrong
disks inserted, it is very annoying to most average users, especially when you
want to transfer a number of programs between two disks with different volume
numbers. (This constraint has been eliminated in DOS 3.2. Ed.) After much
searching, I located the place where the volume check is performed and devised a
patch to disable it. Ifs only two bytes long; just enter the monitor and type:
"BDFE:A9 00". This will disable all volume checking until the next bootstrap. It
works by replacing the comparison instruction which performs the volume check
with a "LOA #0" instruciton which sets the "equality" or Z flag, effectively forc­
ing the match to succeed.

Binary files of arbitrary length can be saved on disk with the " BSA VE" com­
mand. Each BSA VEd file has an implicit starting address and length associated
with it; when the file is BLOADed it is loaded at the starting address. Unfor­
tunately, there is no way provided for a user to find out the starting address and
length of a BSA VEd file; this makes copying files that you are not intimately
familiar with very difficult.

Fortunately, when a file is BLOADed, the directory record of the file is always
placed in a buffer in a fixed location. The buffer contains the starting address and
length of the file as well as other useful information. The length is kept at
memory locations $A960-$A961 while the starting address is stored at $A972-
$A973 (with the least significant byte first, as usual) . Thus to retrieve the starting
address and length of a BSA VEd program you can simply BLOAD it and then PEEK
at the above locations.

Some people might wish to alter the names of some of the DOS commands to
suit their own tastes (it is, after all, a personal computer) . For example, I know
many folks would like to abbreviate the "CATALOG" command to a simple
"C". This is surprisingly easy to do; since the DOS lives in RAM the contents of
its command table are easily changed. The command table is located from $A884
-$A907. Each command name is represented as an ASCII string with the high bits
off, except for the last character of the string, which has its high-order bit set. The
strings are associated with the commands by their position in the command table
(the first string corresponds to the INIT command, the second to the LOAD
command, etc.) . The position of every command is given in table 1.

188 Reference

TABLE 1: POSITION OF COMMANDS IN THE COMMAND TABLE

The position refers to which string in the command table is associated with the
command. 1 means it's the first string, etc.

Position Command

1 INIT
2 LOAD
3 SAVE
4 RUN
5 CHAIN
6 DELETE
7 LOCK
8 UNLOCK
9 CLOSE

10 READ
11 EXEC
12 WRITE
13 POSITION
14 OPEN
15 APPEND
16 RENAME
17 CATALOG
18 MON
19 NOMON
20 PR#
21 IN#
22 MAXFILES
23 FP
24 INT
25 BSA VE
26 BLOAD
27 BRUN
28 VERIFY

Thus you can dream up your own names for the commands by storing new
strings in the command table. For example, to change the name of the INIT com­
mand to "DNEW" you would enter the monitor and type "A884: 44 4E 45 D7'' .
However, some caution is required when you change the length of a command
name; in general you will probably have to rewrite the entire command table to
achieve the desired affect.

The error message table is stored starting at address $A97L By using the same
techniques described for the command table, you can rewrite error messages to be
whatever you like.

Hertzfeld Exploring DOS 189

It is hard to use the input and output hooks in conjunction with the DOS.You
cannot simply change the hooks, as they are the DOS's only contact with the rest
of the system. Also, if you change only one of them, the DOS has the nasty habit
of changing it back. Fortunately, the DOS has its own internal hooks it uses for
keyboard input and video output. Its output hook is at $AA53 - $AA54 and the
input hook immediately follows at $AASS - $AA56. If you change the contents of
these addresses instead of the usual hooks at $36 - $39, everything should work
just fine. For example, let's say you wanted to divert output to a line printer
without disabling the DOS. If the line printer output routine is located at $300, all
you would have to do is enter the monitor and type "AAS3: 00 03" .

To execute a DOS command from a BASIC program, simply ptint it, prefixing
it with a '' control-D'' . The prefix character is stored at memory location $AAB2,
with its high-order bit set. Thus, if you don't like control-D and wish to use some
other prefix character, all you have to do is store a different character value into
$AAB2.

I am very curious to find out the primitive instructions the DOS uses to com­
municate with the disk controller, but without proper documentation it is very
difficult to determine what does what. I have managed to find out the primitives
that tum the drive on and off, though. If your controller card is in slot S, refer­
encing memory location $C089 + $SO will power up the disk and start it spinning
while referencing $C088 + $SO will tum it back off.

This article is merely the tip of the proverbial iceburg; most of the DOS's
internals still remain a mystery to me. I hope Apple eventually distributes com­
plete documentation, but until then other curious users can use this article as a
starting point for their own explorations. Table 2 contains a summary of impor­
tant addresses in the DOS for easy reference, including some not mentioned in the
above commentary.

Table 2.: Important addresses in the Apple II DOS

Address

$B7F6

$9DBF
$AAB2

$A972 - $A973

$A960 - $A961
$A884 - $A907
$A971 - $AA24
$AA53 - $AAS4
$AASS - $AA56
$C089 + $SO, S = slot

Function

holds the volume number of the current
diskette
routine to re-initialize the DOS
location of printing command character, initial­
ly set to control-D
starting address of most recently loaded pro­
gram, Isb first
length of most recently loaded program
the DOS command table
the DOS error message table
the internal hook address to output a character
the internal hook address to input a character

(continued)

190 Reference

no.•

$C088 + $SO, S = slot
no.•

$8000

address to power up the disk

address to power down the disk
routine which reads in the directory off the
disk. It is called by virutally every DOS
command. (RWTS)

All addresses given (except those marked with an asterisk) refer to a system
with 48K bytes of memory. If your system has memory size X, subtract (48K-X)
from each address.

191

Applesoft II Shorthand
by Allen f. Lacy

If you want to make Applesoft a little easier to use, try
this program which permits entire commands to be
input with a single control key. Since the command
lookup is table driven, you can select the keys to
conform to your own preferences. The techniques used
provide a valuable understanding of how to add your
own modifications.

The routine Shorthand ties into the input hooks at $38 and $39 (56 and 57
decimal) and uses a table inside the RAM version of Applesoft II. In Applesoft's
table, each command is represented as an ASCII string with the high bit off except
for the last character of the string which has the high bit set. The routine also uses
a monitor routine to read a key. If it is a control character, shorthand gets an
address from its internal table. If the high byte of the address is 0, the routine
passes the control character back. If the address is not 0 shorthand passes the com­
mand stored at that location back.

To Use with ROM Version

Shorthand could be adapted to run with the ROM version of Applesoft II. The
addresses in Shorthand would have to be changed. I do not have access to a ROM
card and so do not know the addresses. But if the ROM version is just a relocated
RAM version, the addresses in Shorthand and table 2 just need $C800 added to
them.

Shorthand does not use all of the control keys because some have special
functions. These functions are shown in table 1. If you do not mind losing these
functions, these keys can be used also. The choices for which command is tied to
which key is shown in the program listing. If you do not like my choices, you can
change the command addresses stored in table 2. The addresses are for the RAM
version and will not work for the ROM version.

Use of Shorthand

Shorthand is relocatable and can be placed anywhere in memory. I normally
load it at $300-$3AE, which is where I assembled it. But it can be placed
anywhere. Applesoft's HIMEM: can be used to protect some upper memory.

192 Reference

Example: A 32K system without DOS can have Shorth,and loaded at $7F51-7FFF
and then HIMEM: can be set to 32593. To bring up Shorthand use the following
steps:

1. LOAD and RUN the Applesoft TAPE

2. Enter the monitor by pressing RESET or do a CALL.,.---151.

3. Type
300.3AER
or type

7F51.7FFFR

4. Start tape with Shorthand on it and press RETURN, stop the tape when it
has loaded

5. Type
OG
Press Return

6. Type
POKE 1144,0
Press RETURN

7. If Shorthand is at $300-$3AE type
POKE 56,0; POKE 57,3
If Shorthand is at $7F51-$7FFF type
POKE 56,81: POKE 57,127

8. Press RETURN

9. If Shorthand is at 7F51 type
HIMIM: 32593
Press RETURN

Another good place to store Shorthand is between Applesoft II and your pro­
gram. The problem is that Applesoft's LOMEM: does not set the lowest memory
used by Applesoft, but sets the point at which Applesoft will start storing
variables. But the monitor can be used to set pointers. To do this use the following
steps:

1. LOAD and RUN the Applesoft II tape

2. Enter the monitor by pressing RESET or do a CALL-151

3. Type
3000.30AER

4. Start the tape with Shorthand on it and press RETURN
When it has loaded stop the tape.

5. Type
67:BO 30
Press RETURN

6. Type 30AF:O
Press RETURN

7. Type
OG
Press RETURN

8. Type
NEW
Press RETURN

9. Type
POKE 1144,0
Press RETURN

10. Type
POKE 56,0:POKE = 57,48
Press Return

Shorthand will now be tied in.

Lacy Applesoft Shorthand 193

Step 5 sets the pointer which tells Applesoft II where to start storing a pro­
gram to $30BO. Step 6 sets the byte just below the start point to 0. I do not know
why Applesoft wants this, but it will bomb if it is not done. Step 8 causes
Applesoft to reset the rest of its pointers to reflect the new start point.

Now every time you want to type one of the commands stored in the table
just press the control key and another key at the same time.

Example: To enter INPUT press the control key at the same time as the I.

I have made labels for my keyboard showing which command is under which
key. To return full control to the key board, use the command IN#O. To tum
Shorthand back on just POKE the correct values back into 56 and 57. Shorthand
does not have to be turned off when you are finished programming and want to run
a program, unless the program wants one of the control keys which Shorthand
uses, for input. I normally set the hooks when I bring up Applesoft a:nd leave them
set.

The routine should work with DOS. I do not have DOS so these techniques
are not tested. Since DOS communicates with the rest of the system via the input
and output hooks at $36-39, you cannot set the hooks to tie in shorthand
without turning off DOS. But DOS has its own internal hooks. Unfortunately the
hooks are at different places for different memory sizes. In a 48K system the input
hook is at $AASS, $AA56 (43605, 43606 decimal) . For smaller systems subtract
48K-X from the numbers, where xis the memory size.

194 Reference

If you have DOS, use the following procedure to activate Shorthand:

1. Load Shorthand
BLOAD Shorthand-A (see note below) .

2. Use POKEs to set 43605, 43606. If Shorthand is at 0300
POKE 43605,0: POKE 43606,3

Two versions of Shorthand are included. Shorthand-A, which is listed
below,is for Applesoft in RAM and is relocatable. Shorthand-B has been modified
by the editor to work with Applesoft in ROM. This ROM version is on the disk as
Shorthand-B but is not listed here and is not relocatable.

8DO END
8DEINPUT
BED GR
909 HGR2
91C DRAW
92D ROT=
942 NOTRACE
958 COLOR=
96E LOMEM:
985 STORE
997 RUN
9A4 GOSUB
9B61N
9D4 LIST
9E3 TAB(

Control U
Control H

Table 1

Control M RETURN
Control J Line feed
Control G BELL
Control X Kill input line
Control C Stops a running program
Control D Is used by DOS

Table 2

ROM VERSION: Add $C800

8D3 FOR
8E3 DEL
8EF TEXT
90D HGR
920 XDRAW
931' SCALE=
949 NORMAL
961 POP
974 ONERR
98A SPEED=
99A IF
9A9 RETURN
988 WAIT
9D8 CLEAR
9E7 TO

8D6 NEXT
8E6 ulM
901 HLIN
910 HCOLOR=
925 HTAB
937 SHLOAD
94F INVERSE
964 VTAB
979 RESUME
990 LET
99C RESTORE
9AF REM
98C LOAD
9DD GET
9E9 FN

8DA DATA
8E9 READ
905 VLIN
917 HPLOT
929 HOME
93D TRACE
956 FLASH
968 HIMEM:
97F RECALL
993 GOTO
9A3 &
982 STOP
9DO CONT
9EO NEW
9EB SPC(

(continued)

Lacy Applesoft Shorthand 195

9EF THEN 9F3 AT 9F5 NOT 9F8 STEP
9FC + 9FD - 9FE * 9FF I
AOO. A01 AND A04 OR A06>
AO? = A08 > A09 SGN AOC INT
AOF ABS A12 USA A15 FAE A18 SCAN(
A1D PDL A20 POS A23 SOR A26 RND
A29 LOG A2C EXP A2F COS A32 SIN
A35 TAN A38 ATN A3B PEEK A3F LEN
A42 STA$ A46 VAL A49 ASC MC CHA$
A50 LEFT$ A55 RIGHT$ A5B MID$

0800 1 ;***********************
0800 2 ; * *
0800 3 ; * APPLESOFT SHORTHAND *
0800 4 ; * BY *
0800 5 ; * ALAN LACY *
0800 6 ; * *
0800 7 ; * SHORTHAND *
0800 8 ;* * 0800 9 ;* COPYRIGHT (C) 1981 *
0800 10 ; * MICRO INK, INC. *
0800 11 ; * ALL RIGHTS RESERVED *
0800 12 ; * *
0800 13 ;***********************
0800 14 ' 0800 15 ZP EPZ $1E ;R 15 OF SWEET 16
0800 16 .
0800 17 ;**************************
0800 18 ; * LOCATIONS 478-47F NOT * 0800 19 ; * USED BY SCREEN DISPLAY *
0800 20 ;**************************
0800 21 .
0800 22 SW EQU $0478 ; SWITCH
0800 23 CT EQU $0479 ;CHAR COUNT
0800 24 XSAV EQU $047A
0800 25 YSAV EQU $0478
0800 26 POIN EQU $047C ;POINTER
0800 27 ZPS EQU $047E
0800 28 ; *
0800 29 RKEY EQU $FD1B ;KEY READ CODE
0800 30 SW16 EQU $F689 ;SWEET 16
0300 31 ORG $300
0300 32 OBJ $800
0300 33 .
0300 34 ;*******************************
0300 35 ;* *
0300 36 ;* START LOCATION OF SHORTHAND *
0300 37 ; * *
0300 38 ;*******************************
0300 39

' 0300 8E7A04 40 SH STX XSAV SAVE X REG
0303 8C7B04 41 STY YSAV SAVE Y REG
0306 48 42 PHA SAVE ACC
0307 A51E 43 LDA ZP SAVE ZERO PAGE
0309 8D7E04 44 STA ZPS LOCATIONS
030C A51F 45 LOA ZP+l
030E 8D7F04 46 ST!'. ZPS+l
0311 47

196 Reference

0311
0311
0311
0311
0311
0311
0311
0311
0311 20S9F6
0314 00
0315
0315 AD7S04
031S D03B
031A 6S
031B 201BFD
031E 4S
031F C99B
0321 9014
0323
0323
0323
0323
0323
0323
0323
0323 6S
0324 AE7A04
0327 Ac7B04
032A 4S
032B AD7E04
032E S51E
0330 AD7F04
0333 S51F
0335 68
0336 60
0337 297F
0339 OA
033A 6964
033c AS
033D cS
033E BllE
0340
0340
0340
0340
0340
0340
0340
0340
0340
0340
0340
0340 FOEl
0342 SD7D04
0345 SS
0346 BllE
034S SD7C04
034B A9FF
034D SD7S04
0350 A900
0352 SD7904
0355
0355
0355
0355
0355
0355
0355
0355
0355
0355 6S
0356 AC7904
0359 AD7C04
035C S51E

4S
49
50
51
52
53
54
55
56
57
5S
59
60
61
62
63
6.4
65
66
67
6S
69
70
71
72
73
74
75
76
77
7S
79
so
Sl
S2
S3
S4
S5
S6
S7
SS
S9
90
91
92
93
94
95
96
97
9S
99

100
101
102
103
104
105
106
107
lOS
109
110
111
112
113
114
115
116
117
llS
119
120
121

;*****************************
;* SWEET 16 IS USED TO STORE *
;* KP PROGRAM COUNTER IN $1E *
;* $1F AND THIS IS USED TO *
;* FIND THE LOCATION OF THE *
;*TABLE IN SHORTHAND •••••• *
;*****************************

KP

JSR SW16
HEX 00
EQU *
LDA SW
BNE NBYT
PLA
JSR RKEY
PHA
CMP f$9B
BCC CTR

; ENTER SWEET 16
;LEAVE SWEET16
;KNOWN POINT

;CHECK SW
;RESTORE ACC
;READ A KEY
;STORE KEY VAL
;CONTROL KEY?

; *
;*********************************
; * *
;* IF NOT A CONTROL, JUST RETURN *
; * *
;*********************************
; *
RET
RT

CTR

PLA
LDX XSAV
LDY YSAV
PHA
LDA ZPS
STA ZP
LDA Z PS+l
STA Z P+l
PLA
RTS
AND #$7F
ASL
ADC #TAB-KP
TAY
!NY
LDA (ZP),Y

;RESTORE KEY
;RESTORE X REG
;RESTORE Y REG

;RESTORE ZERO
; PAGE LOCATIONS

;WHICH KEY
;TIMES 2
;OFFSET FROM KP

;LOAD ENTRY

' ·********************************* ' '
;* *
;~ IF VALUE OF THE HIGH BYTE IN
;* TABLE IS 0 THEN RETURN THE
;* CONTROL CHAR ELSE SET UP TO
;* RETURN THE CHARACTERS FROM
;* APPLESOFT'S INTERNAL TABLE.

*
*
*
*
*
* ; *

;*********************************

; *

BEC RET
STA POIN+l
DEY

LDA (ZP),Y
STA POIN
LDA #$FF
STA SW
LDA ffO
STA CT

;IFO RETURN
;STORE IN POIN

;SET SW

;SET CT TO 0

;*********************************
; * *
;* NEYT I S USED TO PASS THE CHAR-*
;* ACTERS FROM THE TABLE IN APPL-*
;* SOFT AS IF THEY WERE TYPED IN *
; * *
;*********************************
; *
NEYT PLA

LDY CT
LDA POIN
STA ZP

LOAD CHAR CT
STORE POIN IN
ZERO PAGE

Lacy Applesoft Shorthand 197

035E AD7D04 122 LDA POIN+l
0361 851F 123 STA ZP+l
0363 BllE 124 LDA (ZP), Y ;LOAD NEXT CHAR
0365 C980 125 CMP #$80 ;LAST CHAR?
0367 B007 126 BCS END
0369 0980 127 ORA #$80
036B EE7904 128 INC CT ; INCREMENT CT
036E DOB4 129 BNE RT ;RETURN CHAR
0370 48 130 END PHA ;SAVE CHAR
0371 A900 131 LDA #0 ;RESET SW
0373 8D7804 132 STA SW
0376 68 133 PLA ;RESTORE CHAR
0377 DOAB 134 BNE RT ;RETURN CHAR
0379 135 ; .
0379 136 ;*********************************
0379 137 ; . •
0379 138 ;* TABLE TO STORE ADDRESSES OF •
0379 139 ;* COMMANDS IN APPLESOFT II •
0379 140 ; .
0379 141 ; . WILL HAVE TO BE CHANGED FOR
0379 142 ; . ROM VERSION •
0379 143 ; . •
0379 144 ;*********************************
0379 145 ; .
0379 0000 146 TAS ADR $000 ;@
037B F908 147 ADR $8F9 ;A CALL
037D 3BOA 148 ADR $A3B ;B PEEK
037F 0000 149 ADR $000 ;C
0381 0000 150 ADR $000 ;D
0383 EF08 151 ADR $8EF ;E TEXT
0385 D308 152 ADR $8D3 ;F FOR
0387 0000 153 ADR $000 ;G
0389 0000 154 ADR $000 ;H
038B DE08 155 ADR $8DE ;I INPUT
038D 0000 156 ADR $000 ;J
038F D009 157 ADR $9DO ;K CONT
0391 D409 158 ADR $9D4 ;L LIST
0393 0000 159 ADR $000 ;M
0395 D608 160 ADR $8D6 ;N NEXT
0397 EF09 161 ADR $9EF ;O THEN
0399 FD08 162 ADR $8FD ;P PLOT
039B 0109 163 ADR $901 ;Q HLIN
039D 5B09 164 ADR $95B ;R COLOR=
039F A409 165 ADR $9A4 ;S GOSUB
03Al 9309 166 ADR $993 ;T GOTO
03A3 0000 167 ADR $000 ;U
03A5 6409 168 ADR . $964 ;V VTAB
03A7 0509 169 ADR $905 ;W VLIN
03A9 0000 170 ADR $000 ;X
03AB 2509 171 ADR $925 ;Y HTAB
03AD C709 172 ADR $9C7 ;Z POKE

173 LS END

***** END OF ASSEMBLY

• •
*SYMBOL TABLE -- V 1.5 *
• •
********************•****

LABEL. LDC. LABEL. LOC. LABEL. LOC •

•• ZERO PAGE VARIABLES:

ZP OOlE

•• ABSOLUTE VARABLES/LABELS

SW 0478 CT 0479 XSAV 047A YSAV 047B POIN 047C
ZPS 047E RKEY FDlB SW16 F689 SH 0300 KP 0315 RET 0323 RT 0324 CTR 0337 NBYT 0355 END 0370 TAB 0379 LS 03AF

198 Reference

The Integer BASIC
Token System
in the Apple II

by Frank D. Kirschner

Most BASIC interpreters 'tokenize' the code as they
scan it-storing space-saving 'tokens' in memory. The
Apple Integer BASIC interpreter is no exception. Here is
a discussion of how that Integer BASIC uses tokens,
what the tokens mean, and where these tokens are
stored in memory. The information presented here
should lend considerable insight into the Apple's fast
and efficient Integer BASIC.

There are two primary methods of storing BASIC programs in microcomputers.
One involves storing the entire program, letter by letter and symbol by symbol
somewhere in memory, and interpreting the ASCII codes on execution. This is
typical of BASIC compilers and some interpreters, like the TRS-80 Level I. A more
memory-efficient system uses tokens, eight bit bytes each of which represent a
BASIC word or symbol. The TRS-80 Level II uses this method, as does the Apple
II, to which the examples that follow apply.

When in Integer BASIC, the Apple stores characters as they are entered in a
character buffer (hex locations 0200 to 02FF) . When "return" is entered, BASIC
"parses" the entry (that is, interprets the ASCII characters and breaks the instruc­
tion into executable parts). It determines what is a command, what are variables,
data and so forth. If it is legal and is preceded by a number between 0 and 32767 (a
line number), it stores it in memory in a fashion discussed below. If there is no
line number, it simply executes the command and awaits further instructions.

The way the programs are stored is quite clever. When BASIC is initiated
(control B or EOOO G from the monitor) several things happen. First, the highest
available user memory (RAM) is stored in memory locations 004C (low byte) and
0040 (high byte), called the HIMEM pointer. Also, locations OOCA and OOCB, the
start-of-program pointer, get the same numbers, since there is no program as yet.
As program steps are entered, they are stored starting at the top of memory,
highest line numbers first, and the start-of-program pointer is decreased accord­
ingly. See figure 1. When a line with a higher number than some already in
memory is entered, they are shuffled to preserve the order. One application: if you

EXAMPLES FOR
16K Apple

4000

3FA6

Kirschner Integer BASIC Token 199

HIM EM

(Location stored

in 4C and 4D)

Program

- First line in program

(Location stored

in CA and CB

Figure 1: Memory Map for Program Storage

enter a program and then hit control B, the program is not scratched (or erased);
only the start-of-program pointer is affected. Since powering up the Apple fills the
memory with a pattern of ones and zeros (it looks like FF FF 00 00 ...)from the
monitor, it is easy to find the start of the program and then manually reset CA and
CB to that location.

See figure 2 for an example of the way program instructions are stored in
memory (all numbers are in hex) . As an example, power up the Apple, bring up
BASIC, and enter

100 PRINT 0,50

Enter the monitor (by pushing "reset"), and then examine the program by entering

3FF4.3FFF RETURN

(Locations are for a 16K Apple. Subtract 2000 hex for a 4K or add 4000 hex for a
32K Apple.) You will see this:

3FF4 - OC 64 00 62
3FF8 - BO 00 00 49 85 32 00 01

200 Reference

which means:

oc
6400
62
BO
0000
49
BS
3200
01

There are 12 bytes in this line
It is line 100 (decimal)

PRINT (see table 1 for complete list of tokens)
The next two bytes are a number (rather than tokens)

ThenumberO
The comma in a PRINT statement

Another number follows
The number 50

End of BASIC line

To demonstrate the use of this information, return to BASIC and try to enter
the following BASIC line:

100 DEL 0,50

You will get a syntax error, because the Apple Interpreter does not allow the com­
mand DEL in deferred execution mode. Now do this: reenter the monitor and
change the 62 (PRINT) to 09 (DEL) and the 49 L for PRINT) to OA L for DEL) by
entering

3FF7: 09 RETURN
3FFB: OA RETURN

Reenter BASIC (control C) and list. Try this instruction by adding lines between 0
and 50, running the program, and then listing it. This allows you to write a pro­
gram which will carry out some functions only the first time it is run and then
automatically delete those lines.

08 64 00 01

Tokens for BASIC statements

Line number (Lo byte, Hi byte)
This is line 100 (Decimal)

Number of bytes in BASIC line (also, one less than the number of bytes from the
beginning of the next line.

Figure 2

Kirschner Integer BASIC Token 201

In addition to inserting instructions which cannot be entered as deferred com­
mands, you can modify the program under program control. As an example, here
is a program which will stop and start listing a long program by hitting a key on
the keyboard.

Bring up BASIC
Enter: 257 LIST 0: RETURN
HIT RESET, 3FF6.3FFF RETURN
You will see
3FF6 - OA 01
3FF8 - 01 74 BO 00 00 03 5B 01
What this means:
3FF6: OA Ten bytes in line
3FF7,8: 01 01 LINE 257
3FF9: 74 TOKEN FOR LIST
3FFA: BO Means "Number follows"
3FFB,C: 00 00 LINE TO BE "LISTED" (LO, HI)
3FFD: 03 TOKEN FOR COLON
3FFF: 01 End of BASIC LINE
Now enter 3FF7: FF FF RETURN
Cont. C, List
You have 65535 LIST 0: RETURN
Now enter
100 X = PEEK (- 16384): POKE - 16368, O'. 'F

X~ 127 THEN O: GOTO 100
Reset, 3FCF.3FFF RETURN
Change line number from 100 to 65534 by entering 3FDO; FE FF RETURN
Change GOTO 100 to GOTO 65534 by entering 3FF3: FE FF
Change the 0 in "THEN O" to 65533 by entering 3FEE: FD FF

In a like maimer, enter these remaining steps (under each number which has
to be entered through the monitor, the Hex equivalent, in reverse order as it must
be entered, appears) :

65533 I = ~PEEK(I): I Fl > PEEK (76) +
(FD FF)

256*PEEK (77) THEN END: GOTO
65531
(FB FF)

65532 X =PEEK (- 16384):POKE - 16386,0:
(FC FF)

IF~>127 THEN 65534
(FE FF)

65531 POKE 1637 4, PEEK (I + 1): POKE 16380
(FB ff)

PEEK (t + 2) GOSUB 65535
(FF FF)

32767 I= PEEK (202)+256* PEEK (203)

202 Reference

The steps must be entered ·in reverse order (i.e. descending line numbers) because
the interpreter orders them by their number when entered, and will not re-order
lines when the numbers have been changed through the monitor.

The reason for making all these line numbers very high is so the applications
program will fit "under" the list program. Now, in the monitor, move the start of
program and HIMEM pointers below the program:

3A: 49 3F RETURN
4C: 49 3F RETURN

Hit control C and list. Nothing is listed. The program has been stored in a portion
of memory temporarily inaccessible to BASIC. Load your applications program,
make sure all the line numbers are less than 32767, and change HIMEM through
the monitor (4C: 00 40) and execute RUN 32767. The program will list until you
hit a key and then resume when you hit a key again. It uses the fact that each line
begins with the number of bytes in the line followed by the line number. Numbers
of successive lines are found and POKEd into the appropriate location in line
75535, which then lists each line.

Using these methods you can exercise considerably more control over the
BASIC interpreter in your microcomputer.

Table 1

Apple D Integer BASIC Tokens

BASIC BASIC
Command Hex Command Hex

or Function Token (Continued] Token

ABS 31 LOAD 04
(3F MAN OF
J 72 NEW OB
ASC (3C Includes left NEXT 59

parenthesis
72 SA

II 28 First quote NODSP 79
II 29 Second quote NO TRACE 7A
AUTO OD PDL 32
I OA (3F
CALL 4D J 72
CLR oc PEEK 2E
COLOR= 66 Includes = 3F (
CON 60 72 l
DEL 09 PLOT 67

OA 68
DIM 4F Numeric arrays POKE 64

(continued)

Kirschner Integer BASIC Token 203

34 I 6S
J 72 POP 77
DIM 4E String array PRINT 63 If used alone
(22 PRINT 62 Numeric variable
) 72 46
$ 40 I 49
DSP 7C Numeric variable PRINT 61 String variable
DSP 7B String variable " 28 First
END Sl II 29 Second
FOR SS PR# 7E Includes #

S6 REM SD
TO S7 RETURN SB
STEP S8 RND 2F
GOSUB SC (3F
GOTO SF J 72
GR 4C 36
HIMEM: 10 Includes : SAVE OS
HLIN 69 SCRN(3D Includes(
I 6A I 3E
AT 6B J 72
IF 60 SGN 30
THEN 24 When followed (3F

by a line no. J 72
THEN 25 When followed TAB so

by GOSUB or a TEXT 4B
BASIC operation TRACE 7D

INPUT S4 Numeric variable VLIN 6C
INPUT S2 String variable I 6D
INPUT S3 Input if followed AT 6E

by ...
I 27 VTAB 6F
II 28 First 03
II 29 Second 71 In assignment
IN# 7F Includes # AND ID
LEN (3B Includes (OR lE
LET SE MOD IF
LIST 74 NOR DE

7S

204 Reference

Creating an Applesoft BASIC
Subroutine Library

by N.R. McBumey

There's more than one way to run a BASIC program on
your Apple with DOS. Using EXEC files offers increased
flexibility over the RUN command. In this article the
author uses the power of the EXEC command to link
Applesoft programs from a common library of disk·
resident subroutines.

DISK FULL! Well, of course it was full. I had over a dozen lengthy programs stored
on it. In each of those programs over fifty percent of the code was identical BASIC
routines. Besides the problem of disk space, maintaining identical copies of soft·
ware is almost impossible. After any given period of time identical software will
differ. This is a corollary to somebody's DP axiom that "identical data bases
aren't."

The first problem is to find a way to append the subroutines to the main pro·
grams. To do this, we need to know how BASIC programs are stored in RAM.
With ROM BA~IC, the user program usually starts in location 2049 ($801).
RAM (cassette) BASIC normally starts at 12289 ($3001) . All of the examples in
this article assume and were executed with the ROM version of Applesoft BASIC.
This start address is stored in locations 103-104 ($67-$68). Similarly, the end of
the program is pointed to by locations 175-176 ($AF-$BO) . This is shown
graphically in figure 1, step 1. If we change the start of the program pointer to the
end of our program (figure 1, step 2), then load our subroutines (figure 1, step 3) we
need only change our start of program pointer back to its original value (figure 1,
step 4), to have successfully merged our two programs. To do this manually, first:

LOAD MAIN PROGRAM

where MAIN PROGRAM is the name of the file containing your BASIC program
minus your subroutines. Next type:

I = PEEK(176) * 256 + PEEK(175)- 2

McBumey Creating a Subroutine Library

,,____.._______.]_ .1,_______.....__J . .I~ J . .I~
I prog. stu~ prog. star~ prog. star~

Pointer t Pointer to Pointer to
prog. end prog. end prog. end 2048

f---==-i---~ ~~~~

Program

Step-1

Figure 1

'4ain
Progratn

Step-2

Main
Program

Subroutine

Step-3

Pointer to
prog. end

Main
Program

Subroutine

Step-4

205

As we stated before, decimal locations 176-175 ($AF-$BO) contain the address
of the end of the program currently in RAM. Now type:

POKE 104,INT(l/256)
POKE 103,l-INT(l/256)*256

Decimal locations 103-104 contain the address of the start of the BASIC program.
This is normally 2049 ($801). The above two statements changed the starting
address to now point to the end of our main program. Now we type:

NEW
LOAD SUBROUTINES

where SUBROUTINES is the name of the file containing the routines required by
MAIN PROGRAM. SUBROUTINES has now been loaded behind our first pro­
gram, leaving our original program still intact iIJ. RAM. Finally we type in:

POKE 103,1
POKE 104,8

These two statements changed the pointer to the start of our program back to its
original value (2049 decimal, $801 hex). Assuming you haven't made any typing
errors, if you now type LIST, you will see that you have successfully appended
SUBROUTINES to MAIN PROGRAM.

When we have many programs using the same set of subroutines, this process
will save core, but it doesn't result in user-oriented software. There's an easier
way! The process can be handled with an EXEC file. Apple DOS EXEC files allow
you to store on a text file what you would normally type in at the keyboard. When
you EXEC a file, Apple DOS processes each line exactly as if it had been typed in at
the keyboard. This is an extremely powerful tool. This article explores just one
use of that power.

206 Reference

Program listing 1 contains code for a generalized EXEC file writer. It requests
an EXEC file name, creates or replaces the file and then writes the quoted lines
contained in the program's DATA statements onto the named text file. Any
apostrophes(') in the DATA statements are converted to quotes(") before writing
to the EXEC file. This feature allows us to write PRINT statements to the EXEC
file.

If we run the program shown in listing 1, we produce the EXEC file shown in
listing 2. Let's look at a simple example of how to use this EXEC file.

For this example, the file called MAIN PROGRAM (our main program)
contains the instructions shown in listing 5. Our subroutine file, SUBROUTINES,
contains the instructions shown in listing 6. If we type EXEC MERGE (the name
of the EXEC file in listing 2), we would have the following (user input is underlined):

] LOAD MAIN PROGRAM
] EXEC MERGE
]

]
]
SUBROUTINES LOADED
] LIST

(listing appears)

What we've just done is create a library routine loader! While this approach
has proven adequate for development work, expecting an end user to remember
which main program must be used with which EXEC file is expecting a human
being to adapt to the requirements of the computer. Unfortunately, this kind of
design mentality has been prevalent in the industry and is responsible for much of
the public's distaste for computers. A more professional approach is possible.

There are several ways that the linking operation can be made invisible to the
user and more production oriented for the developer. Our previous example could
have included both the LOAD MAIN PROGRAM and RUN statements. Listing 3
contains an EXEC file with these changes. Using this EXEC file results in the
following:

] EXEC TITLE DEMO
]
]

(Apple HOME's)
FIRST LINE OF TITLE

SECOND LINE

The problem with this approach is that it requires a separate EXEC file to
execute each program. Every disk file requires a minimum of one sector of
overhead plus one sector minimum for the program. This approach is not

McBurney Creating a Subroutine Library 207

completely compatible with our original goal of minimizing storage re­
quirements. A better approach, in my opinion, is to write a menu program that
(invisible to the user) determines the names of the programs to be linked together
by our EXEC file. These file names are stored by the menu program in RAM, and
then the linking EXEC file is EXECed under program control. The EXEC file
retrieves the names from RAM and runs the combined program. Listing 7 contains
a 11ample menu program that illustrates this concept.

In our menu, program lines 1000-1190 display the menu shown in figure 2.
Lines 1200-1340 request the user to enter the number of his request (the line
ENTER YOUR REQUEST NUMBER ... is "crawled" along the bottom of the
screen) . Line 1290 checks to see if a key has been depressed, and if it has, line 1340
converts it from ASCII code to a digit. Lines 1350-1450 map the request number
into a main program name. Since all of the programs require the same subroutine
file, the name of that file is set in line 1530. The loop in lines 1550-1580 POKEs
the two file names into locations 768-829 ($300-$ 330). Locations 768-829 are
generally available to the user. Finally, line 1610 EXECs the file MASTER MERGE
shown in listing 4 and runs the desired combined programs.

I have been using various permutations of the techniques described in this
article for several months and have found them to be extremely workable. The
only obvious restriction is that subroutine line numbers must be larger than the
last line of the main program. In practice, I've limited my main programs to lines
1-29999 and my subroutines to lines 30000-65000. The small amount of
discipline that this restriction imposes is more than offset by the twin benefits of
more effective disk space utilization and easier software maintenance.

SUBROUTINE LIBRARY
USAGE DEMONSTRATION

1) M~IN PROGRAM DEMO
2) DISPLAY 10 TITLES
3) DIAMOND FORMAT
4) BLOCK TITLES
5) UERTICAL TITLE

ENTER YOUR REQUEST NUMBER ...

Figure 2

208 Reference

Listing 1; Generallzed EXEC Fiie Writer Program

1000
1001
1002
1003
1004

REM
REM
REM
REM
REM

* *
* CREATING AN APPLESOFT *
* SUBROUTINE LIBRARY *
* N.R. MCBURNEY *

ioo5 REM * * 1006 REM * EXEC FILE WRITER * 1007 REM . * *
1008 REM * COPYRIGHT (C) 1981 *
1009 REM * MICRO INK, INC. *
1010 REM * CHELMSFORD, MA 01824 *
1012 REM * ALL RIGHTS RESERVED *
1013 REM * *
1014 REM ·····················~··?
1016 REM
1020 REM

WILL

GENERALIZED EXEC FILE WRITER:
QUOTES IN THE DATA STATEMENTS ARE USED ONLY AS DELIMITERS AND

NOT
1030 REM APPEAR ON THE EXEC FILE. APOSTROPHES IN THE DATA STATEMENTS WI

LL APPEAR
1050 REM AS QUOTATION MARKS IN THE EXEC FILE.
1060 REM
1070 D$ = CHR$ (4)
1080 H.OME : PRINT CHR$ (7)
1090 INPUT "NAME FOR EXEC FILE?";FILE$
llOO HOME
lllQ PRINT D$;"MON O"
1120 PRINT D$;"0PEN";FILE$
1130 PRINT D$f"DELETE";FILE$
1140 PRINT D$;"0PEN";FILE$
1150 PRINT D$;"WRITE";FILE$
1160 ONERR GOTO 1250
1161 REM
1162 REM READ IN LINE AND ~EPLACE
1163 REM APOSTROPHES WITH QUOTES
ll64 REI:!
1170 READ S$
1180 A$ z

1190 FOR I = 1 TO ~EN (S$)
1200 IF MID$ (S$,I,l) < > ••• THEN A$ =A$ + MID$ (S$,I,l)
1210 IF M.IO$ ($$;I,i) = ••• THEN A$ =A$. + CHR~ (34)
1220 NEXT
1230 PRINT A$
1240 GOTO 1170
1241 REM
1245 REM CHECK FOR CORRECT ERROR CODE
1246 REM (t42=ouT OF DATA)
1247 REM
1250 IF PEEK (222J = ,2 THEN GOTO 1255
1251 PRINT "Ef!ROR ·t• ~ PEEK (;222)
1252 PRINT "IN LINE t• + PEEK (218) + . PE.EK (219) * 2556
1253 STOP ··
1255 POKE 216,0
1259 PRINT D$;"NOMON O"
1260 PRINT D$;"CLOSE";FILE$
1270 REM
1280 REM BEGIN DATA STATEMENTS DEFINING
1290 REM TEXT TO BE PLACED IN EXEC FILE
1300 REM
1310 DATA "I~PEEK(l76)*256+PEEK(l75)-2 : POKE 104,INT(I/256):POKE 103,I-IN

T(I/256)*256"
1320 DATA "LOAD SUBROUTINES"
1330 DATA. "POKE l:03,l:POKE 104,B:PRINT 'SUBROUTINES LOADED ••• ';CHR$(7)"

McBurney Creating a Subroutine Library

Listing 2: EXEC Fiie MERGE

LOAD MAIN PROGRAM
HOME:I=PEEX(176)*256+PEEK(1 75)-2 :POKE 10
4,INT(I/256):POKE 103,I-INT(I/256)*256
LOAD SUBROUTINES
HOME: POKE 103, 1 : POKE 104, 8: PRINT "SUBROU
TINES LOADED .. ," ;CHR$(7)
RUN

Listing 3: EXEC File TITLE DEMO

LOAD MAIN PROGRAM
HOME:I•PEEK(176)*256+PEEK(175)-2:POKE 10
4,INT(I/256):POKE 103,I-INT(I/256)*256
LOAD SUBROUTINES
HOME:POKE 103,I:POKE 104,8
RUN

Listing 4: EXEC Fiie MASTER MERGE

MAIN$•"":FORI=1T030:MAIN$=MAIN$+CHR$(PEE
K(767+I)) :NEXT:PRINT CHR$(4); "LOAD ";MAI
N$
I•PEEK(176)*256+PEEK(175)-2:POKE 104,INT
(I/256):POKE 103,I-INT(I/256)*256
SUBR$="":FORI=1T030:SUBR$=StlBR$+CHR$(PEE
K(798+I)):NEXT:PRINT CHR$(4);"LOAD ";SUB
R$
POKE 103,I:POKE 104,8
RUN

Listing 5: MAIN Program

100 REM
110 REM DEMONSTARTION MAIN PROGRAM
120 REM
130 HOME
140 TITLE$ = "FIRST LINE OF TITLE"
150 GOSUB 10000
160 TITLE$ = "SECOND LINE"
170 GOSUB 10000
180 END

10000
10010
10020
10030
10040
10050
10060

Listing 6: SUBROUTINE File

REM
REM DEMONSTRATION SUBROUTINE TO
REM PRINT A CENTERED TITLE LINE
REM

L = LEN (TITLE$)
PRINT TAB(20 - L / 2);TITLE$
RETURN

209

210 Reference

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1-460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610

Listing 7: MENU Program

REM
REM MENU DEMONSTRATION PROGRAM
REM
HOME
REM
REM DISPLAY THE MENU
REM
PRINT TAB(lO);"SUBROUTINE LIBRARY"
PRINT TAB(9);"USEAGE DEMONSTRATION"
INVERSE
FOR I = 4 TO 14
HTAB 5
VTAB I
PRINT TAB(35)
NEXT
VTAB 5: HTAB 7: PRINT "l) MAIN PROGRAM DEMO"
VTAB 7: HTAB 7: PRINT "2) DISPLAY 10 TITLES"
VTAB 9: HTAB 7: PRINT "3) DIAMOND FORMA'.1',"
VTAB 11: HTAB 7: PRINT "4) BLOCK TITLES"
VTAB 13: HTAB 7: PRINT "5) VERTICAL TITLE"
REM
REM REQUEST AND WAIT FOR INPUT
REM

A$ = " ENTER YOUR REQUEST NUMBER ••• "
VTAB 22
HTAB 5

A$ = MID$ (A$,2) + LEFT$ (A$,l)
PRINT A$
FOR I = l TO 8

X = PEEK (- 16384)
IF X > 128 THEN 1330
NEXT
GOTO 1240
PC.KE - 16368,0

x = x - 176
REM
REM
REM
REM
REM

DETERMINE WHICH PROGRAM TO APPEND
SUBROUTINES TO AND THEN RUN THAT
PROGRAM VIA THE EXEC FILE

IF X l THEN
IF X 2 THEN
IF X 3 THEN
IF X 4 THEN
IF X 5 THEN
IF MAIN$
NORMAL

MAIN$
MAIN$
MAIN$
MAIN$
MAIN$
THEN

"MAIN PROGRAM"
"TEN TITLES"
"DIAMOND"
"BLOCK TITLES"
"VERTICAL TITLE"

PRINT CHR$ (7): GOTO 1240

REM
REM
REM
REM
REM

POKE NAME OF MAIN PROGRAM INTO LOCATIONS $300-$31E
AND NAME OF SUBROUTINE FILE INTO
LOCATIONS $31F-$33D.

Kl = 767:K2 = 798
SUBR$ = "SUBROUTINES
MAIN$ = LEFT$ (MAIN$ + "

FOR I = l TO 30
POKE Kl + I, ASC (MID$ (MAIN$,I,l))
POKE K2 +I, ASC (MID$ (SUBR$,I,l))
NEXT
HOME
PRINT CHR$ (7)
PRINT CHR$ (4);"EXEC MASTER MERGE"

• '30)

•

212

Language Index

APPLESOFT BASIC

RENUMBER Applesoft Renumbering, Childress 8
SEARCH/CHANGE Search/Change, Childress 15
DATA-GEN Data Statement, Brady 46
EDIT MASK Edit Mask, Reynolds 53
DOLLAR MASK Business Dollars, Bauers 61
CHECK PROTECT Business Dollars, Bauers 61
LC INSERT Lower Case, Childress 65
LC ENTRY Lower Case, Childress 66
FUNCTION GRAPH Graphing, Rational Functions, Carlson 73
SHAPE 1 How to Do a Shape Table, Figueras 91
SHAPE 2 How to Do a Shape Table, Figueras 92
SHAPE 3 How to Do a Shape Table, Figueras 94
CHARACTERS Define Hi-Res Characters, Zant 98
SOLAR Solar System, Partyka 140
EXEC FILE WRITER Creating a Subroutine Library, McBurney 208

INTEGER BASIC

EDIT Program Edit Aid, Hill 19
ALARM PROMPT Alarming Apple, Irwin 39
GRAPH PLOT Hi-Res Graph Plot, Fam 77
GRAPHICS-ORG Hi-Res Graphics Memory, Eliason 102
APPLE PI Apple Pi, Bishop 107
BUBBLE Sorting Revealed, Vile 126
INSERT Sorting Revealed, Vile 127
SELECT Sorting Revealed, Vile 128
SHELL Sorting Revealed, Vile 130
QUICK Sorting Revealed, Vile 131
SPELUNKER Spelunker, Mimlitch 153
APPLE LIFE Life for Your Apple, Suitor 169
TYPE TEST Speed Typing Test, Broderick 174
LUDWIG Ludwig Von Apple, Schwartz 176

MACHINE LANGUAGE

FIND Program Edit Aid, Hill 20
EDIT PLUS A Little Plus, Peterson 27
ZOOM Zoom and Squeeze, Little 32
SLOW LIST Slow List, Sander-Cederlof 35
ALARM Alarming Apple, Irwin 38

·LIFE Life for Your Apple, Suitor 170
SHORTHAND Applesoft Shorthand, Lacy 195

Author Index
(Biographies included)

213

Aµricchio, Richard 181
Software engineer for Apple Computer, Inc. His previous experience
includes work on operating system development using the Xerox
Sigma-9 mainframe.

Bauers, Barton M., Jr 55
Executive vice president of LFE Corporation, Fluids Control Division.
His programming background includes experience with Fortran, PL-1,
and BASIC. Bauers holds a Masters degree in stience in industrial
engineering with a concentration in operations research.

Bishop, Bob 105
Senior member of the technical staff at Apple Computer, Inc., work­
ing on research and development. Bishop is author of Applevision.

Brady, Virginia Lee :43
Registered nurse. Brady bought an Apple computer, took computer
courses, and now works as a programmer at the Maryland Institute for
Emergency Medical Services (shock trauma) in Baltimore, Maryland.

Broderick, John, CPA 173

Carlson, Ron 69
Computer instructor at Plymouth-Canton High School, Canton,
Michigan. He was previously a math teacher for ten years and a senior
instructor at Sycor, a minicomputer manufacturer. His articles have
appeared in MICRO, Creative Computing, Personal Computing and
Recreational Computing. Carlson has conducted computer education
seminars for schools and organizations. He is currently completing a
textbook on high school computer instruction.

Carpenter, Chuck 175
Senior systems engineer at Xerox Corporation in Dallas, Texas.
Carpenter has published articles in several computer magazines and is
currently writing the Creative Computing Apple Cart column.

Childress, J.D 5, 12, 62
President of CareWare, Inc., a firm specializing in microcomputer
software for the health-care industry. He holds a Ph.D. in Physics.

214 Author Index

Chipchase, Frank .. 9
Chief engineer for International Multifoods Corporation. Before pur­
chasing an Apple, Chipchase had had no experience with computers.
He has written a utility program for the Apple which is being
marketed.

Eliason, Andrew H. , ... 99

Fam, Richard 75

Figueras, John 78
Scientific programmer at Eastman Kodak Research Labs. He holds a
Ph.D. in organic chemistry.

Hertzfeld, Andrew 186
Employed at Apple Computer, Inc., since August 1979.

Hill, Alan .. 17
Apple owner and enthusiast since early 1978. He enjoys writing utili­
ty programs and is the author of Master Catalog, Amper-Reader,
Amper-Search, as well as Amper-Sort II.

Irwin, Paul · ... · · · · · · · · · · 3 7
Programmer/ analyst operating a software and consulting business
centered on microcomputer applications. Irwin holds a B.S. in
Physics and Math. He is currently serving as president of the Ottawa
6502 user group.

Kirschner, Frank D 198

Lacy, Allen .. 191
Professional programmer who writes programs for large IBM, and
desk-top computers.

Little, Gary .. 29
Articled law student and Apple hobbyist. Past president and current
treasurer of Apples British Columbia Computer Society in Vancouver.

McBurney, N.R .. 204
Southern region manager of custom applications for General Electric
Information Services Co. He has held a variety of scientific, data pro­
cessing and management positions at General Electric. McBurney
holds a BA in Mathematics and owns an Apple.

Mimlitch, Thomas, R 155
Director of technical services for the MicroAge Computer Store in
Columbus, Ohio. Mimlitch integrates microcomputer hardware and
software systems. A computer science graduate (BA), Mimlitch has
pursued interests in artificial intelligence, analog simulations, and
operating systems.

Author Index 215

Mulligan, John ... 143
Systems designer for Bio-science Laboratories, a division of the Dow
Chemical Company.

Partyka, David ... 134
Works as a programmer on an IBM 3031 OS system for the May
Department Stores, Co. He's been programming for the past three
years and was an operator for four years before that.

Peterson, Craig 25
Numerical control engineer for his company which uses an Apple II.

Reynolds, Leon M 47
Computer programmer for 15 years. He reads everything he can about
the Apple and has a library of several hundred programs.

Sander-Cederlof, R.B ... 33
Owner of a company called S-C Software where he specializes in pro­
ducing Apple software, such as the S-C Assembler II. He has been pro­
gramming computers since 1957, including the IBM 704, Bendix G-15
and CDC 6600. During the infancy of time-sharing he wrote two in­
teractive Fortran systems and a data base management system for the
Control Data 3300. During seven years at Texas Instruments, he
created the software for Tl's manufacturing robots, and several online
test systems. He purchased an Apple in 1977. Sander-Cederlof
publishes, writes and edits two newsletters: AppleGram and Apple
Assembly Line.

Schwartz, Marc .. 175

Suitor, Richard F ... 168
Suitor grew up expecting to be a physicist, but his mind was warped
by early exposure to the awesome collections of vacuum tubes and
blinking lights that evolved.into the micros of today. In 1978 he ob­
tained an Apple. Final degeneration was immediate; having decided
his case was chronic, he has joined Software Resources of Cambridge,
Massachusetts.

Vile, Richard C. Jr .. 109
Project leader in the compiler and languages areas for Bell Northern
Research, Inc.

Zant, Robert F 96
Professor of information systems at North Texas State University.
Zant has 17 years experience in computing as a programmer, analyst,
educator, and consultant.

216 Disk Information

DISK VOLUME 001

*A 005 MICRO/APPLE
*A 009 RENUMBER
*A 013 SEARCH/CHANGE
*I 005 EDIT
*B 002 FIND
*B 002 EDIT PLUS
*B 002 ZOOM
*B 002 SLOW LIST
*I 005 ALARM PROMPT
*B 002 ALARM
*A 006 DATA-GEN
*A 017 EDIT MASK
*A 005 DOLLAR MASK
*A 005 CHECK PROTECT
*A 007 LC INSERT
*A 005 LC ENTRY
*A 012 FUNCTION GRAPH
*I 006 GRAPH-PLOT
*A 006 SHAPE 1
*A 019 SHAPE2
*A 008 SHAPE3
*A 007 CHARACTERS
*I 005 GRAPHICS-:-ORG
*I 010 APPLE PI
*I 009 BUBBLE
*I 010 INSERT
*I 009 SELECT
*I 010 SHELL
*I 012 QUICK
*A 022 SOLAR
*I 040 SPELUNKER
*I 006 APPLE LIFE
*B 003 LIFE
*I 011 TYPE TEST
*I 005 LUDWIG
*B 002 SHORTHAND-A
*B 002 SHORTHAND-B
*A 007 EXEC FILE WRITER

MICROIAPPLE
Volume 1
Recorded in I: sector DOS • format.

Copyright © 1981 by MICRO INK, Inc.
P.O. Box 6502

Chelmsford, MA 01824
All rights reserved

198

Notice to Purchaser

When this book is purchased, this pocket should contain

A. One floppy disk entitled MICRO! Apple, Volume 1.
B. A warranty card pertaining to the disk.

If either is missing, make sure you ask the seller for a copy.

The publisher hereby grants the retail purchaser the right
to make one copy of the disk for back-up purposes only.
Any other copying of the disk violates the copyright laws
and is expressly forbidden.

MICRO/.l\pple 1
' .. \··' ~

Edited by Ford Cavallari

30 ~rticles by· 2~ Authors
'More than 30 Programs 9n Diskette!

No,Need to Type in Hundre.ds of Lines of Code!

With) this volume, Micro Jnk, Inc., publisher+ of MICRO, The 6502 Journal,
inaugurates a series of books entitled MICRO/Appl:e.

MICRO and the Apple have grown up together. ll;ICRO began in 1977, the year the
Apple II was·first available commercially, and IVllCRO's first issue bore on its cover a
large picture of the then .little known Apple 11:

This volume, MICRO/ Apple 1, while especially for beginning-to-intermediate-level
Apple users, will interest even sophisticated users. It contains some of the most
valuable general-interest articles and programs published. in the magazine since
1977-brought up to date by the authors and MICRO staff. The programs have been
tested and entered on the diskette. which comes with the book (13-sector DOS 3.2
format).

Subsequent volumes of NUCRO;/ Apple will contain comprehensive reference
.. mate.rials, more advancecj machine language routines, and educational primers.
These volumes will not only contain articles published in MICRO but other original
material, some of it too lengthy to fit into the magazine format.

About the Editor
Ford C:avaUari received a degree in mathematics from Dartmouth. While there, he
made extensive use of the college's time-sharing and microcomputer facilities and
helped 'convert several important BASIC academic. programs to run on Apple II

, systems. His work with the Apple has ranged fi:om large-scale computer architecture
projects tll tiny, recreational graphics programs. He is a founding member of the
Computer Literacy Institute. As Apple Special~t on the staff of MICRO, The 6502
Journal, l::\e serves as Editor of the MICRO/ Apple book series.

+$24.95 in U.S./Canada
(Including floppy diskJ

- .

ISSN 02 7 5-353 7
ISBN 0-938222-05-8

M.ICRO INK, In,c.
P.O. Box 6502

r-het;n~f~rd:· M.ass~cliusetts o 1 s:i4

	MICRO/Apple 1
	Acknowledgements
	Contents
	Introduction
	Chapter 1: BASIC Aids
	Introduction
	Applesoft Renumbering - James D. Childress
	Better Utilization of Apple Computer Renumber and Merge Program - Frank D. Chipchase
	SEARCH/CHANGE In Applesoft
	An Apple II Program Edit Aid - Alan G. Hill

	Chapter 2: I/O Enhancements
	Introduction
	A Little Plus for Your Apple II - Craig Peterson
	Zoom and Squeeze - Gary B. Little
	A Slow List for Apple BASIC - R. B. Sander-Cederlof
	Alarming Apple - Paul Irwin

	Chapter 3: Runtime Utilities
	Introduction
	Data Statement Generator - Virginia Lee Brady
	An EDIT Mask Routine in Applesoft BASIC - Lee Reynolds
	Business Dollars and Sense in Applesoft - Barton M. Bauers, Jr.
	Lower Case and Punctuation in Applesoft - James D. Childress

	Chapter 4: Graphics
	Introduction
	Graphing Rational Functions - Ron Carlson
	A Hi-Res Graph-Plotting Subroutine in Integer BASIC for the Apple II - Richard Fam
	How to Do a Shape Table Easily and Correctly! - John Figueras
	Define Hi-Res Characters for the Apple II - Robert F. Zant
	Apple II High Resolution Graphics Memory Organization - Andrew H. Eliason

	Chapter 5: Education
	Introduction
	Apple Pi - Robert J. Bishop
	Sorting Revealed - Richard C. Vile, Jr.
	Solar System Simulation with or without an Apple II - David A. Partyka
	Programming with Pascal - John P. Mulligan

	Chapter 6: Games
	Introduction
	Spelunker - Thomas R. Mimlitch
	LIFE for your Apple - Richard F. Suitor
	Apple II Speed Typing Test With Input Time Clock - John Broderick, CPA
	Ludwig Von Apple II - Marc Schwartz

	Chapter 7: Reference
	Introduction
	An Apple II Programmer's Guide (You Can Get There from Here!) - Rick Auricchio
	Exploring the Apple II DOS - Andy Hertzfeld
	Applesoft II Shorthand - Allen J. Lacy
	The Integer BASIC Token System in the Apple II - Frank D. Kirschner
	Creating an Applesoft BASIC Subroutine Library - N. R. McBurney

	Language Index
	Author Index (Biographies included)
	DISK VOLUME 001
	Notice to Purchaser

